Посмотрите,в чём сложность. Функция упрощается,потому что в числителе трёхчлен, который можно представить в формуле а(x-x1)(x-x2)(x-x3)(x-x4), наверняка вы расписывали так трёхчлен второй степени. Если вас смущает мой с дискриминантом решайте биквадратное уравнение(вводите t),лишь бы в формулу со скобками подставили корни.И да,a - коэф.при х^2,чаще его не бывает в ГИА. Но если так будет - квадратичную функцию раскрывайте "фонтанчиком". Иначе говоря,какая степень уравнения(большая),столько корней,т.е. скобок. Дальше сокращаем.И ТА-ДАМ!Остаётся простая квадратичная функция. Находим нужные нам точки:точки пересения с ох,с oy и самое главное - КООРДИНАТЫ ВЕРШИНЫ ПАРАБОЛЫ.Можно так и бросить,эксперту больше не надо.Но я строю табличку,чтобы график был более ровен и точен. А что такое прямая y=m? Прямая,параллельная оси ox(Т.Е.X-0,ЭТО БЫВШАЯ ЛИНЕЙНАЯ ФУНКЦИЯ,МЫ КАК БЫ НАПОМИНАЕМ ОБ Х) А где будет одна общая точка с графиком? Да как видно,она пройдёт через вершину параболы(забираем y). Окончательный ответ:при m=-2.25.
{a1+ a6=11 a2+a4=10 Выразим а2, а4 , а6 через первый член арифметической прогрессии и разность прогрессии (d) a2=a1+d a4=a1+3d a6=a1+5d и подставим в систему: {a1+a1+5d=11 a1+d+a1+3d=10 {2a1+5d=11 2a1+4d=10 Решим систему методом сложения. Умножим первое уравнение на (-1) и сложим со вторым: {-2a1-5d=-11 + 2a1+4d=10 -d=-1 d=1 2a1+4=10 a1=3 (подставили найденное значение d во второе уравнение системы и нашли первый член прогрессии.) По формуле суммы n-первых членов прогрессии найдём сумму первых шести членов этой прогрессии: S6=(2·3+5 )\2·6=33 (Sn=(2a1+d(n-1))\2·n) ответ:33
10+10корень10+25=35+10корень10