Объяснение:
1) Общий член арифметической прогрессии an = a1 + d (n - 1).
a1 = - 14;
a2 = -11 = - 14 + d;
d = 3;
a23 = - 14 + 3 * 22 = 52.
Найдём сумму первых 23 членов этой арифметической прогрессии:
S23 = 23 (a1 + a23) / 2 = 23 * 19 = 437.
2) Найдём одиннадцатый член этой арифметической прогрессии:
a1 = 17,2;
a11 = 17,2 - 0,2 * 10 = 15,2;
Сумма одиннадцати членов равна:
S11 = 11 * (17,2 + 15,2)/2 = 178,2.
3) Найдём двадцать второй член этой арифметической прогрессии:
a1 = 6;
a10 = 12,3 = 6 +9 d;
d = 0,7;
a20 = 6 + 0,7 * 19 = 19,3.
Найдём сумму 22 членов этой арифметической прогрессии:
S22 = 22 * (6 + 19,3)/2 = 278,3.
x=0 x=-8 x=17
_ + _ +
[-8][0][17]
x∈(-∞;-8] U [0;17]
2)(X+3)(x-8)(x-20)>0
x=-3 x=8 x=20
_ + _ +
(-3)(8)(20)
x∈(-3;8) U (20;∞)
3)-x(x-1)(5-x)(x+20)>0
x(x-1)(x-5)(x+20)>0
x=0 x=1 x=5 x=-20
+ _ + _ +
(-20)(0)(1)(5)
x∈(-∞;-20) U (0;1) U (5;∞)