М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Разложите на множителиx2-81=y2-6y+9=16x2-49=9a+30ab+25b=

👇
Ответ:
User5281
User5281
09.02.2020

Решает на фотографии


Разложите на множителиx2-81=y2-6y+9=16x2-49=9a+30ab+25b=
4,8(4 оценок)
Открыть все ответы
Ответ:
Tomilka777
Tomilka777
09.02.2020
1)    ;
sin2x - (1-sin²x)  =0 ;
2sinxcosx -cos²x =0 ;
cosx(2sinx -cosx) =0 ;
[cosx =0 ;2sinx-cosx =0.⇔ [cosx =0 ;sinx=(1/2)cosx.⇔[cosx =0 ;tqx=1/2.
[ x=π/2 +πn ; x =arctq1/2+πn , n∈Z.

2)   ;
ctq2x*cos²x - ctq2x*sin²x =0 ;
ctq2x*(cos²x - sin²x) =0 ;
ctq2x*cos2x =0 ;
sin2x =0  * * *cos2x = ± 1 ≠0→ ОДЗ * * * 
2x =πn , n∈Z ;
x =(π/2)*n , n∈Z .

3)   ;
3sin²x/2 -2sinx/2 =0 ;
3sinx/2 (sinx/2 -2/3) =0 ;
[sinx/2 =0 ; sinx/2 =2/3 .⇒[x/2 =πn ; x/2= arcsin(2/3) +πn ,n∈Z.⇔
[x =2πn ; x= 2arcsin(2/3) +2πn ,n∈Z.

4)  ;
* *cos2α =cos²α -sin²α =cos²α -(1-sin²α)=2cos²α -1⇒1+cos2α=2cos²α * *
cos3x = 1+cos2*(3x) ;  * * * α = 3x  * * *
cos3x = 2cos²3x ; 
2cos²3x -cos3x =0 ;
2cos3x(cos3x -1/2) =0 ;
[cos3x =0 ; cos3x =1/2 ⇒[3x=π/2+πn ; 3x= ±π/3+2πn ,n∈Z.⇔
[x=π/6+πn/3 ; x= ±π/9+(2π/3)*n ,n∈Z.
4,4(56 оценок)
Ответ:
Ljjr6958der8cox45
Ljjr6958der8cox45
09.02.2020
Равномощными называют множества, у которых равное количество элементов.
Если количество элементов бесконечное, то различают разные уровни бесконечности.
На нижнем (нулевом) уровне стоят счетные множества. Математики говорят, что у них кардинальное число равно алеф-нуль.
Это, например, множества целых, натуральных или рациональных чисел.
Георг Кантор доказал, что все эти три множества - счетные, и имеют мощность алеф-нуль.
Выше, на первом уровне, стоят множества действительных чисел, комплексных чисел, а также множества точек на отрезке, на прямой, на плоскости или в пространстве.
Это Кантор тоже доказал, что каждой точке на прямой можно поставить в соответствие точку на плоскости или в пространстве.
Про эти множества говорят, что они имеют мощность алеф-один, или мощность континуума.
Так вот, мощность множества точек на отрезке любой длины, [3;8] или [0;4], или на открытом промежутке [0;4), равно мощности прямой, то есть континууму.
Обозначается английской буквой с.
4,7(74 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ