1-вся работа х-производительность мастера в день у-производительность ученика в день Система уравнений Первое 0,5/х=0,5/(х+у)+2 0,5/(х+у)-0,5/х+2=0 разделим на 0,5 1/(х+у)-1/х+4=0 умножим на х(х+у) х-(х+у)+4х(х+у)=0 х-х-у+4х²+4ху=0 -у+4х²+4ху=0 у-4ху=4х² у(1-4х)=4х² у=4х²/(1-4х)
Второе 1/у-1/х=5 умножим на ху х-у=5ху у+5ху=х у(1+5х)=х у=х/(1+5х)
Желтых 4 ж. зеленых --- 6 ж. взято 3 ж. Р(1 др.) ? Решение. 1-ы й с п о с о б. 4 + 6 = 10 всего жетонов. Р(все жел.) = (4/10)*(3/9)*(2/8) = 1/30 Р(все зел.) = (6/10)*(5/9)*(4/8) = 1/6 События вынимания жетона в очередной раз того же цвета не зависят друг от друга, поэтому их вероятности перемножаются. Но с каждым разом вероятности вынуть жетон опять того же цвета уменьшается, т.к. жетоны назад не возвращаются, Становится меньше и жетонов этого цвета, и вообще меньше жетонов. Вероятность вынимания жетонов одного цвета складывается из вероятности вынуть все зеленые или все желтые. Р(один.) = Р(все жел.) + Р(все зел.) = 1/30 + 1/6 = (5+1)/30 = 6/30 = 1/5 = 0,2 Суммарная вероятность вынуть 3 жетона с окраской равна 1 (других цветов и неокрашенных жетонов нет), она складывается из вероятностей вынуть какой-то набор. Вероятность трех одинаковых найдена. Для вычисления вероятности того, в наборе будут представлены оба цвета, надо из 1 вычесть вероятность трех одинаковых. Р(1 др.) = 1 - Р(один.) = 1 - 0,2 = 0,8 ответ:0,8 2-о й с п о с о б. 4 + 6 = 10 всего жетонов. С₁₀³ = 10!/(3!(10-3)!) = 10!/(3!*7!) = (10*9*8*7!)/(1*2*3*7!)=120 всего вынуть три жетона из десяти С₄² * С₆¹ = (4!/(2!*2!))*(6!/(1*5!)) = ((4*3*2)/(2*2))*((6*5!)/5!)) = 36 всего вынуть два желтых и один зеленый жетон. С₆² * С₄¹ = (6!/(2!*4!))*(4!/3!) = ((6*5*4!)/(2*4!))*(4*3!/3!) = 60 всего вынуть два зеленых жетона и один желтый 36 + 60 = 96 всего благоприятных дающих нужный результат). Р(1 др.) = 96/120 = 8/10 = 0,8 вероятность появления жетона другого цвета в наборе из трех вынутых . ответ:0,8
Периметр прямоугольника P=2(a+b)=16
тогда a+b=8. a=8-b
Площадь прямоугольника S=a*b=(8-b)*b
Рассмотрим произведение (8-b)*b и найдем при каких b оно примет наибольшее значение
введем f(x)=8x-x²= -x²+8x
Графиком данной функции будет парабола, "ветви вниз"
наибольшее значение она примет в своей вершине
x₀= -b/2a= -8/-2=4
Значит при b=4 и а=8-4=4 значение площади будет наибольшим