Разность двух многочленов может равняться числу в том случае, если эти два многочлена тождественно равны или отличаются только значением свободного члена (свободный член многочлена. это - член без буквенной части).
Например:
1). 10(х³+х²) - (10х³+10х²)=
Приводим 1-й многочлен к стандартному виду и раскрываем скобки:
10х³+10х²-10х³-10х²=0
Тождественно равные многочлены самоуничтожаются, их разность равна 0.
2) (х³+х²+х+10) - (х³+х²+х-5) =
Раскрываем скобки:
х³+х²+х+10-х³-х²-х-(-5) = 10+5=15
Тождественно равная часть многочлена ( х³+х²+х) самоуничтожилась и осталась только разность свободных членов: 10-(-5) - разность равна числу.
Найдите корни уравнения:
1) 7+2x²=2(x+1)(x+3)
постепенно раскрываем скобки
7+2х²=2(х²+3х+х+3)
7+2х²=2(х²+(3х+х)+3)
7+2х²=2(х²+4х+3)
7+2х²=2х²+8х+6
перенесём всё в правую часть и приравняем уравнение к нулю, при этом не забываем сменить знаки на противоположные
2х²+8х+6-7-2х²=0
группируем или приводим подобные члены
(2х²-2х²)+8х+(6-7)=0
8х-1=0
8х=1
х=1:8
____________________________________________________
7+2·(0,125)²=2(0,125+1)(0,125+3) (это проверка)
7,03125=2·1,125·3,125
7,03125=7,03125
2) (y+4)(y+1)=y-(y-2)(2-y)
постепенно раскрываем скобки
у²+у+4у+4=y-(2y-y²-4+2y)
у²+у+4у+4=y-(-y²+(2y+2y)-4)
у²+у+4у+4=y-(-y²+4y-4)
у²+у+4у+4=y+y²-4y+4
перенесём всё в левую часть и приравняем уравнение к нулю, при этом не забываем сменить знаки на противоположные
у²+у+4у+4-y-y²+4y-4=0
группируем или приводим подобные члены
(у²-y²)+(у+4у-y+4y)+(4-4)=0
8у=0
у=0
(0+4)(0+1)=0-(0-2)(2-0)
4·1=0-(-2·2)
4=0-(-4)
4=0+4
4=4
2) Задача
Обозначим кроликов "к", а фазанов "ф"
у кроликов по 4 лапы, а у фазанов 2
согласно данным условия задачи составляем систему уравнениий:
4к+2ф=100 (1)
к+ф=36 (2)
к=36-ф
4(36-ф)+2ф=100
144-4ф+2ф=100
144-2ф=100
2ф=144-100
2ф=44
ф=44:2
ф=22 (шт.) - фазаны.
к=36-ф=36-22=14 (шт.) - кролики.
ответ: В клетке находятся 14 кроликов и 22 фазана.