Пусть новая дневная норма равна Х га. С этой нормой фермер вспахал поле за 72/Х = Д (дней). (1)
Фермер превысил дневную норму на 9 га и вспахал поле на 4 дня раньше, то есть со старой нормой он бы вспахал поле за
72/(Х-9) = Д+4 (дней). (2).
Подставим значение (1) в уравнение (2) и получим:
72/(Х-9) = 72/Х + 4. Решаем уравнение:
72Х = 72(Х-9) +4Х(Х-9) => Х² - 9X - 162 = 0.
X1 = (9+√(81+648))/2 = (9+27)/2 = 18.
Х2 получается отрицательным и не удовлетворяет условиям задачи.
Итак, фермер вспахал все поле за 72/18 = 4 дня.
10 минут=1/6 часа
2 минуты =1/30 часа
Пусть скорость поезда v км/ч, тогда время за которое должен был пройти поезд 54/v часов. Пройдя 14 км со скорость v, он затратил 14/v часов, Ему осталось пройти 54-14=40 км со скоростью (v+10) км/ч. Составим и решим уравнение:
54/v+1/30=14/v+40/(v+10)+1/6
(54-14)/v+40/(v+10)=1/6-1/30
40(v+10-v)/(v(v+10))=2/15
400*15/2=v(v+10)
v²+10v-3000=0
D=10²+4*3000=12100=110²
v₁=(-10+110)/2=50 км/ч
v₂=(-10-110)/2=-60 <0
ответ 50 км/ч
Пусть скорость реки x км/ч, тогда скорость по течению (x+3) км/ч, а против (х-3) км/ч. Составим и решим уравнение.
4/(x-3)+25/(x+3)=1
4x+12+25x-75=x²-9
х²-29х+54=0
D=29²-4*54=625=25²
х₁=(29-25)/2=2 км/ч < cкорости течения
х₂=(29+25)/2=27 км/ч скорость парохода
ответ 27 км/ч