Классическое решение делается в двух основных частях:
1) Поиск ОДЗ – область допустимых значений. 2) Решение уравнения.
Немного о первом. Все семь основных арифметических действий – имеют ОДНОЗНАЧНЫЙ результат. Вы, возможно знаете пока не все из них, но это не меняет ничего в рассуждениях. Однозначность действия означает, что при вычислении результата любого из них получается однозначный ответ. Ну, например, ведь нет такого, что у одного при вычислении а у другого :–) ?! Конечно же, нет, это бы вызывало полную неразбериху и ни в одной науке ничего нельзя было бы вычислить ни по одной формуле. Но иногда, при изучении квадратного корня, учащиеся понимают это действие не совсем корректно, полагая, что но одновременно с тем как бы и Это ошибка! Так понимать действие корня нельзя. Любой калькулятор покажет именно и это и есть верный результат вычислений, поскольку он единственный, так как любое арифметическое действие должно давать ОДНОЗНАЧНЫЙ результат.
Происхождение такого недоразумения вполне объяснимо. Это происходит из созвучности понятий «квадратный арифметический корень» и «корни нелинейного уравнения». Выше мы говорили именно о «квадратном арифметическом корне», и об однозначности этого арифметического действия, а что такое «корни нелинейного уравнения» можно проиллюстрировать на таком примере, как Корни этого нелинейного уравнения, как легко понять: и или в короткой записи что равносильно где сам «арифметический квадратный корень» – это именно ПОЛОЖИТЕЛЬНОЕ число, а уж перед ним ставятся разные знаки, чтобы показать, что «корнями этого нелинейного уравнения» являются и само значение «квадратного арифметического корня» и число, противоположное ему. Аналогично, например, для уравнения: Корни этого нелинейного уравнения, как легко понять: где сам «арифметический квадратный корень» – это именно ПОЛОЖИТЕЛЬНОЕ число, а уж перед ним ставятся разные знаки, чтобы показать, что «корнями этого нелинейного уравнения» являются и само значение «квадратного арифметического корня» и число, противоположное ему.
Значит при поиске ОДЗ (область допустимых значений) нужно всегда учитывать, что подкоренное выражение (всё то, что стоит под знаком корня) во-первых: должно быть неотрицательным, потому что иначе нельзя извлечь корень, а во-вторых: результат вычисления самого арифметического квадратного корня должен быть равен тоже неотрицательному числу, по причинам, которые были подробно описаны в предыдущем абзаце. Есть ещё несколько простых принципов, по которым выстраивается логика ОДЗ, но в данной задаче они не нужны, так что не будем все их перечислять. А теперь решим задачу классическим
Пусть l метров в час - скорость бурения 3 скважины, а t - время, через которое её глубина стала равной глубине второй скважины. Так как последняя равна 1*t=t метров в час, то получаем уравнение l*(t-1)=t. По условию, l*(t-1+1,5)=l*(t+0,5)=2*(t+1,5). Из первого уравнения находим l=t/(t-1). Подставляя это выражение во второе уравнение, получаем уравнение t(t+0,5)/(t-1)=(t²+0,5*t)/(t-1)=2t+3, или t²+0,5*t=(2t+3)(t-1), или t²+0,5*t=2t²+t-3, или t²+0,5t-3=0, или 2t²+t-6=0. Дискриминант D=1²-4*2*(-6)=49=7². Отсюда t=(-1+7)/4=1,5 часа, а l=t/(t-1)=1,5/0,5=3 метра в час. ответ: 3 метра в час.
а)(a-3)²=a²-6a+9
б)(2у+5)²=4y²+20y+25
в)(4а-б)(4а+б)=16a²-б²
г)(х²+1)(х²-1)=x⁴-1