Перед нами квадратное неравенство 2х² + х -6 ≤ 0.
Для начала решим квадратное уравнение 2х² + х -6
Решаем квадратное уравнение
x 1 = -2
x 2 = 1.5
Интервалы знакопостоянства
Определяем интервалы, на которых функция не меняет знак - интервалы знакопостоянства.
( -∞ , -2) ( -2 , 1.5) ( 1.5 , +∞)
Определяем, какой знак принимает функция на каждом интервале.
( -∞ , -2) плюс
( -2 , 1.5) минус
( 1.5 , +∞) плюс
Записываем интервалы, удовлетворяющие неравенству.
( -2 , 1.5)
Проверяем входят ли концы интервалов в ответ.
[-2 , 1.5]
ФИНАЛЬНЫЙ ОТВЕТ:
x принадлежит интервалу [-2 , 1.5]
А нам в ответ нужно записать ТОЛЬКО ЦЕЛЫЕ ЧИСЛА
ответ: -2; -1; 0; 1.
Нужно раскрыть скобки по формулам сокращенного умножения
Сначала раскроем (а+1)во второй степени,получится
а в квадрате +2а+1
Дальше рассмотрим оставшиеся,то есть -(2а+3)во второй степени
-(4а в квадрате +12а+9 )
Раскроем скобки и получится
-4а в квадрате -12а-9
В итоге получилось
а в квадрате +2а+1-4а в квадрате -12а-9
Находим подобные и получается
-3 а в квадрате -10 а -8=0
Теперь решаем дискриминантом
Д(дискриминант)=корню из четырех ,то есть двум
А1= -2 целые одна третья
А2= -1
Второе уравнение решается аналогично
25 с в квадрате +80с +64 -с в квадрате +20с-100=0
Что-бы было удобней вычитать Д сократим все на два,и получится
6с в квадрате+25с-9=0
Д=корень из 841 =29
С1=1/3
С2=11/3=3 целых 2/3