Формула сокращенного умножения (а+в)^2 выражение в квадрате, т.е. умножить само на себя два раза (а+в)^2=(а+b)*(a+b) умножить многочлен на многочлен, т.е. каждое слагаемое первого множителя умножаем на каждое слагаемое второго (а+в)^2=(а+b)*(a+b)=а*(a+b)+b*(a+b)= умножение одночлена на многочлен по распределительному закону (а+в)^2=(а+b)*(a+b)=а*(a+b)+b*(a+b)=a*a+a*b+a*b+b^2 приводим подобные слагаемые (а+в)^2=(а+b)*(a+b)=а*(a+b)+b*(a+b)=a*a+ a*b+a*b+b^2=a^2+2ab+b^2 (а+в)^2=a^2+2ab+b^2 -формула сокращенного умножения, запоминаем первое и последнее, пропуская выкладки
1)
Так как значения синуса не могут быть большими единицы, получаем:
Так как выражение под радикалом и собственно весь радикал не могут быть отрицательными получаем:
Откуда получаем:
Объединяя полученные результаты получаем: a∈
ответ: a∈
2)
Получаем квадратное уравнение относительно t:
Исходя из того что данное уравнение должно иметь лишь одно решение получаем, что дискриминант должен быть равен нулю:
Но так как нам нужно только одно решение в заданном промежутке получаем:
неравенство не имеет решений
Получаем, что при a∈
данное уравнение имеет лишь один корень
ответ: a∈