1__Для начала признаки делимости на 9:
"Число делится на 9 , если сумма его цифр делится на 9";
2___также если один из множителей делится на число "а", то и произведение делится на число "а"
3___А вот Сумма/разность, делится на число "а", если все ее члены делятся н это число.
теперь, все просто, число "207"=2+0+7=9,9 делится на 9(1), следовательно 207^5 делится на 9 из (2){207*207*207*207*207};
"72"=7+2=9, 9 делится на 9(1),следовательно 72^6 делится на 9 из (2);
И исходя из выше названных причин и упираясь на свойство (3) ,можно сделать вывод , что 207^5-72^6 делится на 9 .
ч.т.д.
Объяснение:
1) Kl=12; KM:ML= 3 : 1
KM=3ML
KM+ML=KL
3ML+ML=12
4ML=12
ML=3
KM=3ML=9
2) AB/ED=YX/LK; AB= 2 см, ED= 3 см и LK= 27 см
YX=LK·AB/ED=27·2/3=54/3=18
YX=18 см
3) ΔKBC∼ΔRTG; k= 18; P₁=8; S₁=9; P₂=?, S₂=?
Условие не полное. Не определена зависимость сторон от коэффициента подобия к. То есть какие стороны подобны(это не обязательно), а главное порядок отношения сторон относительно к.
Рассмотрю оба случая:
a) ΔKBC∼ΔRTG⇒P₂/P₁=k; S₂/S₁=k²
P₂=kP₁=8·18=144 см
S₂=k²S₁=8²·9=64·9=576 см²
б) ΔKBC∼ΔRTG⇒P₁/P₂=k; S₁/S₂=k²
P₂=P₁/=18/8=2,25 см
S₂=S₁/k²=9/8²=9/64 см²