Хлоропла́ст — зелёные пластиды, которые встречаются в клетках растений и водорослей. С их происходит фотосинтез. Хлоропласты содержат хлорофилл. Являются двумембранными органеллами. Под двойной мембраной имеются тилакоиды (мембранные образования, в которых находится электронтранспортная цепь хлоропластов). Тилакоиды высших растений группируются в граны, которые представляют собой стопки сплюснутых и тесно прижатых друг к другу тилакоидов, имеющих форму дисков. Пространство между оболочкой хлоропласта и тилакоидами называется стромой. В строме содержатся хлоропластные молекулы РНК, ДНК, рибосомы, крахмальные зёрна, а также ферменты цикла Кальвина[1]. Предполагают, что хлоропласты возникли из цианобактерий.Митохондрии имеются во всех эукариотических клетках. Эти органеллы — главное место аэробной дыхательной активности клетки. Впервые митохондрии были обнаружены в виде гранул в мышечных клетках в 1850 г.
Число митохондрий в клетке очень непостоянно; оно зависит от вида организма и от природы клетки. В клетках, в которых потребность в энергии велика, содержится много митохондрий (водной печеночной клетке, например, их может быть около 1000). В менее активных клетках митохондрий гораздо меньше. Чрезвычайно сильно варьируют также размеры и форма митохондрий. Митохондрии могут быть спиральными, округлыми, вытянутыми, чашевидными и даже разветвленными: в более активных клетках они обычно крупнее. Длина митохондрий колеблется в пределах 1,5-10 мкм, а ширина — в пределах 0,25-1,00 мкм, но их диаметр не превышает 1 мкм.
Митохондрии изменять свою форму, а некоторые могут также перемещаться в особо активные участки клетки. Такое перемещение позволяет клетке сосредоточить большое число митохондрий в тех местах, где выше потребность в АТФ. В других случаях положение митохондрий более постоянно (как, например, в летательных мышцах насекомых).
Снаружи клетку покрывает n-мерная нанобрана. Данная брана имеет n измерений, число которых зависит от потребностей клетки. Число большее чем 4 необходимо для связывания клетки с ноосферой. Самое главное - это тенебропласты - генераторы тёмной материи. Без них в растительных клетках не могут происходить квантовые процессы, которые необходимы как для связи клеток, так и для связи растения с ноосферой. Затем идут квантохондрии. Они запасают энергию из колебания эфира, которая равна бесконечности и необходима для поддержания связи растения с ноосферой. Затем нуклеоцессор - оно хранит и передаёт информацию из ядра в ноосферу. В нём находятся 15 зеттафлопов на кубический паскаль информации, принятой из ноосферы и ожидает передачи примерно такое же количество информации. Затем наноакретор Гольджи. Он необходим для квантовой наносборки компонентов клетки из исходного молекулярного или квантово-энергетического вещества под руководством информации, полученной из нуклеоцессора. Затем аннигилосомы - выполняют роль разборки устаревших компонентов клетки на квантово-энергетические составляющие посредством аннигиляции. Вакуумоли - необходимы для накопления излишков тёмной материи. С возрастом клетки они увеличиваются. Иногда до такой степени, что смещают нуклеоцессор с самой n-мерной нанобране. Когда нуклеоцессор сталкивается с нанобраной, происходит явление, называемое как апоптолапс n-мерной псевдосингулярности, во время которого клетка сворачивается в чёрную дыру и растворяется в квантовом вакууме.
Число митохондрий в клетке очень непостоянно; оно зависит от вида организма и от природы клетки. В клетках, в которых потребность в энергии велика, содержится много митохондрий (водной печеночной клетке, например, их может быть около 1000). В менее активных клетках митохондрий гораздо меньше. Чрезвычайно сильно варьируют также размеры и форма митохондрий. Митохондрии могут быть спиральными, округлыми, вытянутыми, чашевидными и даже разветвленными: в более активных клетках они обычно крупнее. Длина митохондрий колеблется в пределах 1,5-10 мкм, а ширина — в пределах 0,25-1,00 мкм, но их диаметр не превышает 1 мкм.
Митохондрии изменять свою форму, а некоторые могут также перемещаться в особо активные участки клетки. Такое перемещение позволяет клетке сосредоточить большое число митохондрий в тех местах, где выше потребность в АТФ. В других случаях положение митохондрий более постоянно (как, например, в летательных мышцах насекомых).