Объяснение:
Во время цветения на растениях появляются цветки – большие или совсем крошечные, невероятно красивые или вовсе неприметные. В центре каждого цветка находится пыльца, которая выглядит как множество мельчайших желтоватых крупинок.
Пыльца необходима для размножения растений, которое происходит за счет опыления – переноса пыльцы с одних цветков на другие. Без опыления из цветка не вырастет плод с семенами и, значит, растение окажется бесплодным.
Процесс опыления происходит двумя основными
Опыление насекомыми. Когда пчела или другое насекомое садится на цветок, к его лапкам прилипает пыльца. Перелетая на другой цветок такого же вида растений, насекомое невольно становится переносчиком пыльцы и опылителем. Насекомые-опылители имеют большое значение, ведь с их растения могут размножаться (шиповник, яблоня, груша и другие. Опыление ветром. Есть растения, которые опыляются с ветра. Их цветки маленького размера, совсем невзрачные и расположены в группах. У таких цветков совсем нет нектара, ведь им нет нужды привлекать насекомых. Пыльца образуется очень рано, когда на деревьях еще нет листвы, и в большом количестве – это нужно для того, чтобы ветер смог свободно разнести ее по свету.В природе существует немало растений, которые размножаются не семенами, а своими частями:
корневыми отростками;
луковицами;
частями стеблей;
клубнями.
К примеру, садоводы размножают клубнику с стеблей-усиков, которые зарывают в землю, чтобы те проросли и дали жизнь новому растению. Картофель высаживают мелкими клубнями, а чеснок, лук, тюльпаны и нарциссы – луковицами.
Первичная структура белка. К настоящему времени расшифрована первичная структура десятков тысяч разных белков, что является несомненным достижением биохимии. Однако это число ничтожно мало, если учесть, что в природе около 1012 разнообразных белков. Под первичной структурой подразумевают порядок, последовательность расположения аминокислотных остатков в полипептидной цепи. Зная первичную структуру, местоположение каждого остатка аминокислоты, можно точно написать структурную формулу белковой молекулы, если она представлена одной полипептидной цепью.
Для определения первичной структуры полипептидной цепи в первую очередь методами гидролиза выясняют аминокислотный состав, точнее, соотношение каждой из 20 аминокислот в образце гомогенного полипептида. Затем приступают к определению химической природы концевых аминокислот полипептидной цепи, содержащей одну свободную NH2-группу и одну свободную СООН-группу.
Вторичная структура белка. Под вторичной структурой белка подразумевают конфигурацию полипептидной цепи, т. е свертывания, скручивания (складывание, упаковка) полипептидной цепи в спиральную или какую-либо другую конформацию. Процесс этот протекает не хаотично, а в соответствии с программой, заложенной в первичной структуре. Подробно изучены две основные конфигурации полипептидных цепей, отвечающих структурным требованиям и экспериментальным данным: α-спирали и β-структуры.
Благодаря исследованиям Л. Полинга наиболее вероятным типом строения глобулярных белков принято считать α-спираль (рис. 1). Закручивание полипептидной цепи происходит по часовой стрелке (правый ход спирали), что обусловлено L-аминокислотным составом природных белков. Движущей силой в возникновении α-спиралей (так же как и β-структур) является аминокислот к образованию водородных связей. В структуре α-спиралей открыт ряд закономерностей. На каждый виток (шаг) спирали приходится 3,6 аминокислотных остатка. Шаг спирали (расстояние вдоль оси) равен 0,54 нм на виток, через 5 витков спирали (18 аминокислотных остатков) структурная конфигурация полипептидной цепи повторяется. Это означает, что период повторяемости (или идентичности) α-спиральной структуры составляет 2,7 нм.
Не все глобулярные белки спирализованы на всем протяжении полипептидной цепи. В молекуле белка α-спиральные участки чередуются с линейными. В частности, если α- и β-цепи гемоглобина спирализованы, например, на 75%, то лизоцима – на 42%, а пепсина – всего на 30%
.
Объяснение:
Надеюсь