Строение эукариотической клеткиКлетки, образующие ткани животных и растений, значительно различаются по форме, размерам и внутреннему строению. Однако все они обнаруживают сходство в главных чертах процессов жизнедеятельности, обмена веществ, в раздражимости, росте, развитии к изменчивости. Клетки всех типов содержат два основных компонента, тесно связанных между собой, — цитоплазму и ядро. Ядро отделено от цитоплазмы пористой мембраной и содержит ядерный сок, хроматин и ядрышко. Полужидкая цитоплазма заполняет всю клетку и пронизана многочисленными канальцами. Снаружи она покрыта цитоплазматической мембраной. В ней имеются специализированные структуры-органоиды, присутствующие в клетке постоянно, и временные образования — включения. Мембранные органоиды: наружная цитоплазматическая мембрана (HЦM), эндоплазматическая сеть (ЭПС), аппарат Гольджи, лизосомы, митохондрии и пластиды. Эукариотическая и прокариотическая клетки, строение, сходства и различия Строение эукариотической клеткиКлетки, образующие ткани животных и растений, значительно различаются по форме, размерам и внутреннему строению. Однако все они обнаруживают сходство в главных чертах процессов жизнедеятельности, обмена веществ, в раздражимости, росте, развитии к изменчивости. Клетки всех типов содержат два основных компонента, тесно связанных между собой, — цитоплазму и ядро. Ядро отделено от цитоплазмы пористой мембраной и содержит ядерный сок, хроматин и ядрышко. Полужидкая цитоплазма заполняет всю клетку и пронизана многочисленными канальцами. Снаружи она покрыта цитоплазматической мембраной. В ней имеются специализированные структуры-органоиды, присутствующие в клетке постоянно, и временные образования — включения. Мембранные органоиды: наружная цитоплазматическая мембрана (HЦM), эндоплазматическая сеть (ЭПС), аппарат Гольджи, лизосомы, митохондрии и пластиды. Рис. 1. Комбинированная схема строения эукариотической клетки: а — клетка животного происхождения; б — растительная клетка 1 — ядро с хроматином и ядрышком; 2 — плазматическая мембрана; 3 — клеточная стенка; 4 — плазмодесма; 5 — гранулярный цитоплазматический ретикулум; 6 — гладкий ретикулум; 7 — пиноцитозная вакуоль; 8 — аппарат Гольджи; 9 — лизосома; 10 — жировые включения в гладком ретикулуме; 11 — центриоль и микротрубочки центросферы; 12 — митохондрии; 13 — полирибосомы гиалоплазмы; 14 — центральная вакуоль; 15 — хлоропласт
Чем больше активных генов, запускающих синтез меланина, имеется в клетке, тем темнее ее окраска. Эти гены локализованы в четырех разных хромосомах. У людей с самой темной кожей имеется восемь аллелей этих генов (поскольку клетки диплоидные); обозначим их буквой A. У человека с самой светлой кожей нет ни одного активного аллеля; обозначим неактивные аллели буквой а. При браке таких двух людей их дети получат четыре активных аллеля от одного из родителей и их окраска будет промежуточной между окраской родителей (как при смешивании воды и окрашенной жидкости). Генотип этих людей будет A1a1A2а2A3а3A4а4. А что будет при браке людей, имеющих такие генотипы (гетерозиготные по всем четырем генам)? Каждый из них может иметь гаметы, содержащие все четыре доминантных аллеля, три доминантных и один рецессивный и т.д. С теории вероятности можно доказать, что с наибольшей вероятностью (равной 3/8) будут возникать гаметы, имеющие два доминантных и два рецессивных аллеля; с вероятностью 1/4 будут возникать гаметы, содержащие один доминантный аллель (или один рецессивный аллель); наконец, с наименьшей вероятностью - 1/16 будут возникать гаметы, содержащие все четыре доминантные аллеля (или все четыре рецессивные аллеля). Дальше легко посчитать вероятность возникновения разных зигот. Из этих результатов следует, что у людей с генотипом A1а1A2а2A3а3A4а4 чаще всего будут рождаться дети с тем же цветом кожи, который имеют они сами. Но изредка у них могут рождаться гораздо более светлые или гораздо более темные дети. Так и происходит на самом деле.