Дружба - одна из самых важных вещей в жизни каждого человека. "Старый друг лучше новых двух", - гласит древняя русская пословица.
Дружба основывается на общих интересах, взаимоподдержке, понимании и, самое главное, на доверии. Когда людям не о чем разговаривать, то им просто нет смысла общаться.
Дружба нужна всем, даже тем, кто это отрицает. И маленькому ребенку, и старику, и богатому занятому человеку... Перечислять можно до бесконечности.
Настоящий друг не станет постоянно рассказывать только о себе, не станет делать из вас "жилетку" и вечно плакаться. Он обязательно выслушает вас и с ним вы можете просто весело провести время: расслабиться, посмеяться, обсуждать понравившийся фильм или что-либо еше, все на свете. Друзья познаются не только в беде, но и в радости.
К сожалению, очень много людей не ценят ни своих друзей, ни дружбу вообще. Но... Когда-то и в их жизни наступит тот момент, когда они почувствуют, что им чего-то не хватает, чего-то очень близкого и родного, будто частички души. Вот тогда люди и начнут ценить это высокое чувство - дружбу.
Дружба очень важна для меня и своих троих лучших друзей я очень ценю и уважаю. Они - самое дорогое, что есть в моей жизни и я ни под каким предлогом не хочу их потерять.
Так
Объяснение:
Такой режим питания несложно соблюдать. Специалисты говорят, что это исследование является первым, показавшим пользу полного доступа к еде в одни часы дня и ограничения приема пищи в другие часы у людей с ожирением.
Исследователи из Университета Иллинойса в Чикаго изучили влияние ограниченного во времени приема пищи у 23 добровольцев с ожирением средний возраст которых составлял 45 лет, индекс массы тела 35 (индекс массы тела (ИМТ) рассчитывается по формуле - рост в сантиметрах разделить на массу тела в кг в квадрате - ИМТ = m / h2, норма - до от 18,5 до 25,5 единиц). Результаты исследования опубликованы в журнале Nutrition and Healthy Aging.
Участники исследования могли принимать любую пищу в неограниченном количестве в период времени между 10.00 утра и 18.00. Однако, в течение остальных 16 часов участники могли пить только воду или напитки, почти не содержащие калорий. Испытание продолжалось в течение 12 недель.
В сравнении с контрольной группой, участники, соблюдавшие указанный режим питания, потребляли за сутки меньшее количество калорий, в результате чего у них снижался вес, а также артериальное давление.
ответ:
это - одномерное пространство, то есть просто ось ox. любая точка на ней характеризуется одной координатой.
теперь проведём ось oy перпендикулярно оси ox. вот и получилось двумерное пространство, то есть плоскость xoy. любая точка на ней характеризуется двумя координатами - абсциссой и ординатой.
проведём ось oz перпендикулярно осям ox и oy. получится трёхмерное пространство, в котором у любой точки есть абсцисса, ордината и аппликата.
логично, что четвёртая ось, oq, должна быть перпендикулярной осям ox, oy и oz одновременно. но мы не можем точно построить такую ось, и потому остаётся только попытаться представить её себе. у каждой точки в четырёхмерном пространстве есть четыре координаты: x, y, z и q.
теперь посмотрим, как появился четырёхмерный куб.
если сделать параллельный перенос этой линии вдоль оси oy, а потом соединить соответствующие концы двух получившихся линий, получится квадрат.
аналогично, если сделать параллельный перенос квадрата вдоль оси oz и соединить соответствующие вершины, то получится куб.
а если сделать параллельный перенос куба вдоль оси oq и соединить вершины двух этих кубов, то мы получим четырёхмерный куб. кстати, он называется тессеракт .
представим, что в воздухе над поверхностью висит каркасная модель куба, то есть как бы «сделанная из проволоки», а над ней - лампочка. если включить лампочку, обвести карандашом тень от куба, а потом выключить лампочку, то на поверхности будет изображена проекция куба.
перейдём к немного более сложному. ещё раз посмотрите на рисунок с лампочкой: как видите, все лучи сошлись в одной точке. она называется точкой схода и используется для построения перспективной проекции (а бывает и параллельная, когда все лучи параллельны друг другу. результат - не создаётся ощущения объёма, но она легче, и при том если точка схода достаточно сильно удалена от проецируемого объекта, то разница между этими двумя проекциями мало заметна). чтобы спроецировать данную точку на данную плоскость, используя точку схода, нужно провести прямую через точку схода и данную точку, а потом найти точку пересечения получившейся прямой и плоскости. а для того, чтобы спроецировать более сложную фигуру, скажем, куб, нужно спроецировать каждую его вершину, а потом соответствующие точки соединить. следует заметить, что алгоритм проекции пространства на подпространство можно обобщить для случая 4d-> 3d, а не только 3d-> 2d.
теперь поговорим о проекции тессеракта.
слева находится проекция куба на плоскость, а справа - тессеракта на объём. они довольно схожи: проекция куба выглядит как два квадрата, маленький и большой, один внутри другого, и у которых соответствующие вершины соединены линиями. а проекция тессеракта выглядит как два куба, маленький и большой, один внутри другого, и у которых соответствующие вершины соединены. но мы все видели куб, и можем с уверенностью сказать, что и маленький квадрат, и большой, и четыре трапеции сверху, снизу, справа и слева от маленького квадрата, на самом деле являются квадратами, при чём равными. и у тессеракта тоже самое. и большой куб, и маленький куб, и шесть усечённых пирамид по бокам от маленького куба - это всё кубы, при чём равные.
представьте себе, что куб вращается вокруг оси oz. тогда каждая из его вершин описывает окружность вокруг оси oz.
а окружность - фигура плоская. и плоскости каждой из этих окружностей параллельны между собой, и в данном случае параллельны плоскости xoy. то есть мы можем говорить не только о вращении вокруг оси oz, а ещё и о вращении параллельно плоскости xoy.как видим, у точек, которые вращаются параллельно оси xoy меняются только абсцисса и ордината, аппликата же остаётся неизменной и, вообще-то, мы можем говорить о вращении вокруг прямой только тогда, когда имеем дело с трёхмерным пространством. в двумерном всё вращается вокруг точки, в четырёхмерном - вокруг плоскости, в пятимерном пространстве мы говорим о вращении вокруг объёма. и если вращение вокруг точки мы можем себе представить, то вращение вокруг плоскости и объёма - что-то немыслимое. а если будем говорить о вращении параллельно плоскости, то тогда в любом n-мерном пространстве точка может вращаться параллельно плоскости.
многие из вас, вероятно, слышали о матрице поворота. умножив точку на неё, получим точку, повёрнутую параллельно плоскости на угол фи. для двумерного пространства она выглядит так:
как умножать: икс точки, повёрнутой на угол фи = косинус угла фи*икс первоначальной точки минус синус угла фи*игрек первоначальной точки;
xa`=cosф*xa - sinф*ya
ya`=sinф*xa + cosф*ya
, где xa и ya - абсцисса и ордината точки, которую нужно повернуть, xa` и ya` - абсцисса и ордината уже повёрнутой точки
для трёхмерного пространства это матрица обобщается следующим образом:
вращение параллельно плоскости xoy. как видим, координата z не меняется, а меняются только x и y
xa`=cosф*xa - sinф*ya + za*0
ya`=sinф*xa +cosф*ya + za*0
za`=xa*0 + ya*0 + za*1 (по сути, za`=za)
объяснение: