Родился в селе Ново-Покровка Семипалатинской области, в 1959 окончил МГУ. С 1959 работал в Астрофизическом институте АН КазССР (в 1974—1984 — директор). Академик Национальной академии наук Казахстана (2003). Был учредительным членом Европейского астрономического союза (1992), членом Комиссии № 7 МАС (1996), членом Комитета по государственным премиям Республики Казахстан в области науки, техники и образования при Кабинете Министров РК.
Основные труды в области динамики галактик и их систем, релятивистским моделям сверхскоплений, динамике двойных звезд с корпускулярным излучением и нестационарным задачам небесной механики. Получил обобщение уравнения Лагранжа-Якоби для диссипирующей звездной системы, исследовал динамические особенности скоплений галактик в мире с ослабляющейся гравитацией, указал построения функций распределения для гравитирующей системы с несохраняющейся полной энергией. Рассмотрел динамику групп галактик с учётом космологического фона излучения. Получил решение классической задачи двух тел внутри гравитирующей материи мира Эйнштейна — де Ситтера, построил метрику, описывающую в рамках общего решения Толмена поле центральной массы на фоне расширяющейся Вселенной Фридмана. Исследовал динамическую эволюцию двойных звёзд с изотропным корпускулярным излучением в той обобщённой постановке задачи, когда учитывается гравитационное воздействие членов системы на движение самих корпускул.
Объяснение:
ответ:Сре́днее арифмети́ческое (в математике и статистике) — разновидность среднего значения. Определяется как число, равное сумме всех чисел множества, делённой на их количество. Является одной из наиболее распространённых мер центральной тенденции.
Предложена (наряду со средним геометрическим и средним гармоническим) ещё пифагорейцами[1].
Частными случаями среднего арифметического являются среднее (генеральной совокупности) и выборочное среднее (выборки).
При стремлении количества элементов множества чисел стационарного случайного процесса к бесконечности среднее арифметическое стремится к математическому ожиданию случайной величины.
Объяснение:
надеюсь ведь вопрос некоректный
18 % - 34,02 кг;
100 % - х кг.
х =3402: 18 = 189.
Таким образом, нужно высушить 189 кг винограда.
Ответ: 189 г.