Ольга Матвеевна Авилова (10 сентября 1918, г. Бежица, ныне в черте Брянска, — 27 декабря 2009, Киев[1]) — советский и украинский хирург, учёный-медик в области торакальной хирургии и пульмонологии, педагог, доктор медицинских наук (1974), профессор (1975), заведующая кафедрой торакальной хирургии и пульмонологии Киевского медицинского института усовершенствования врачей (1975–1988)[2]. Лауреат Государственной премии СССР (1974)[3], заслуженный деятель науки УССР (1982). Заслуженный врач УССР (1962).
ответ:Сре́днее арифмети́ческое (в математике и статистике) — разновидность среднего значения. Определяется как число, равное сумме всех чисел множества, делённой на их количество. Является одной из наиболее распространённых мер центральной тенденции.
Предложена (наряду со средним геометрическим и средним гармоническим) ещё пифагорейцами[1].
Частными случаями среднего арифметического являются среднее (генеральной совокупности) и выборочное среднее (выборки).
При стремлении количества элементов множества чисел стационарного случайного процесса к бесконечности среднее арифметическое стремится к математическому ожиданию случайной величины.
Объяснение:
надеюсь ведь вопрос некоректный
Если сторона и прилежащие к ней углы одного треугольника соответственно равны стороне и прилежащим к ней углам другого треугольника то такие треугольники равны.
Дано:ΔABC, ΔA1B1C1, AB=A1B1, ∠A=∠A1, ∠B=∠B1.
Доказать: ΔABC= ΔA1B1C1
Доказательство:
Так как AB=A1B1, то треугольник A1B1C1 можно наложить на треугольник ABC так, чтобы
сторона A1B1 совместилась со стороной AB,
точки C1 и С лежали по одну сторону от прямой AB.
Поскольку ∠A=∠A1, сторона A1С1 при этом наложится на луч AC.
Так как ∠B=∠B1, сторона B1C1 наложится на сторону BC.
Точка С1 принадлежит как стороне A1С1, так и стороне B1C1, поэтому С1лежит и на луче AC, и на луче CB.
Лучи AC и CB пересекаются в точке C. Следовательно, точка С1 совместится с точкой C.
Значит, сторона A1С1 совместится со стороной AC, а сторона B1C1 — со стороной BC.
Таким образом, при наложении треугольники ABC и A1B1C1 полностью совместятся.
А это означает, что ΔABC= ΔA1B1C1 (по определению).
Что и требовалось доказать.