М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

1. Выяснить являются ли группоидом: a. числовое множество R+ с операциями сложения (умножения, деления, вычитания); b. множество Q всех рациональных чисел относительно операции взятия среднего арифметического (среднего геометрического); c. множество всех натуральных чисел меньших (больших) заданного числа n относительно операции сложения (умножения); d. множество всех невырожденных матриц размером nxn относительно операции сложения (умножения) матриц.

👇
Ответ:
saa20
saa20
23.08.2022
Давайте рассмотрим каждое из этих множеств и проверим, являются ли они группоидом.

а. Числовое множество R+ с операциями сложения, умножения, деления и вычитания.

Операции сложения и умножения являются закрытыми на множестве положительных действительных чисел R+, так как сумма и произведение двух положительных чисел также принадлежат множеству положительных чисел.

Операции деления и вычитания, однако, не являются закрытыми на множестве R+. Например, при вычитании двух положительных чисел, результат может быть отрицательным и, следовательно, не принадлежать множеству R+. То же самое относится и к делению - результат деления двух положительных чисел может быть отрицательным или не принадлежать множеству положительных чисел.

Таким образом, мы можем сказать, что множество R+ с операциями сложения и умножения является группоидом, но не является группоидом с операциями деления и вычитания.

б. Множество Q всех рациональных чисел относительно операции взятия среднего арифметического (среднего геометрического).

Операция взятия среднего арифметического двух рациональных чисел является закрытой на множестве Q, так как среднее арифметическое двух рациональных чисел также будет рациональным числом.

Однако, операция взятия среднего геометрического двух рациональных чисел не является закрытой на множестве Q. Например, если мы возьмем два рациональных числа, одно из которых положительно, а другое - отрицательно, то среднее геометрическое будет комплексным числом, которое не принадлежит множеству Q.

Таким образом, множество Q с операцией взятия среднего арифметического является группоидом, но не является группоидом с операцией взятия среднего геометрического.

в. Множество всех натуральных чисел меньших (больших) заданного числа n относительно операции сложения (умножения).

Операции сложения и умножения являются закрытыми на множестве натуральных чисел. Если мы сложим или умножим два натуральных числа, результат также будет натуральным числом.

Таким образом, множество всех натуральных чисел меньших (больших) заданного числа n с операцией сложения (умножения) является группоидом.

г. Множество всех невырожденных матриц размером nxn относительно операций сложения и умножения матриц.

Операции сложения и умножения матриц являются закрытыми на множестве всех невырожденных матриц, так как результат этих операций также будет невырожденной матрицей.

Таким образом, множество всех невырожденных матриц размером nxn с операциями сложения и умножения матриц является группоидом.

Вывод:
- Множество R+ с операциями сложения и умножения является группоидом, но не является группоидом с операциями деления и вычитания.
- Множество Q с операцией взятия среднего арифметического является группоидом, но не является группоидом с операцией взятия среднего геометрического.
- Множество всех натуральных чисел меньших (больших) заданного числа n с операцией сложения (умножения) является группоидом.
- Множество всех невырожденных матриц размером nxn с операциями сложения и умножения матриц является группоидом.
4,8(100 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Другие предметы
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ