Выбрать язык▼
Главная
ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ ПО СТАТИКЕ
Пример 1. Определить реакции опор горизонтальной балки от заданной нагрузки.
Дано:
Схема балки (рис. 1).
P = 20 кН, G = 10 кН, М = 4 кНм, q = 2 кН/м, a=2 м, b=3 м, .
Определить реакции опор в точках А и В.
Рис. 1
Рассмотрим равновесие балки АВ (рис. 2).
К балке приложена уравновешенная система сил, состоящая из активных сил и сил реакции.
Активные (заданные) силы:
, , , пара сил с моментом М, где
- сосредоточенная сила, заменяющая действие распределенной вдоль отрезка АС нагрузки интенсивностью q.
Величина
Линия действия силы проходит через середину отрезка АС.
Силы реакции (неизвестные силы):
, , .
- заменяет действие отброшенного подвижного шарнира (опора А).
Реакция перпендикулярна поверхности, на которую опираются катки подвижного шарнира.
, - заменяют действие отброшенного неподвижного шарнира (опора В).
, - составляющие реакции , направление которой заранее неизвестно.
Расчетная схема
Рис. 2
Для полученной плоской произвольной системы сил можно составить три уравнения равновесия:
, , .
Задача является статически определимой, так как число неизвестных сил (, , ) - три - равно числу уравнений равновесия.
Поместим систему координат XY в точку А, ось AX направим вдоль балки. За центр моментов всех сил выберем точку В.
Составим уравнения равновесия:
1) ;
2)
3)
Решая систему уравнений, найдем , , .
Определив, , найдем величину силы реакции неподвижного шарнира
В целях проверки составим уравнение
.
Если в результате подстановки в правую часть этого равенства данных задачи и найденных сил реакций получим нуль, то задача решена - верно.
Реакции найдены верно. Неточность объясняется округлением при вычислении .
Пример 2. Для заданной плоской рамы определить реакции опор.
Дано:
Схема рамы рис.3
P = 20 кН, G = 10 кН, М = 4 кНм, q = 2 кН/м, a=2 м, b=3 м, .
Определить реакции опор рамы.
Рис. 3
Рассмотрим равновесие жесткой рамы АВЕС (рис. 4).
Расчетная схема
Напряжение u(t)и ток i(t)изменяются по синусоидальному закону с одной частотой, следовательно, мгновенные значения тока и напряжения в цепи записываются:
u = Um sin(t+u ),
i = Im sin(t+i),
где Um - амплитудное значение напряжения; Im - амплитудное значение тока; = 2f - угловая частота; f = 1/T - частота синусоидальных напряжения и тока; Т - период; u - начальная фаза синусоидального напряжения; i - начальная фаза синусоидального тока
= 2f= 250= 314 рад/с ; u= - /6 = -30 о ; i= /4 = 45 о .
Начальная фаза напряжения uимеет знак (-), так как синусоида u(t)сдвинута по оси абсцисс вправо от начала координат (величина самой функции при t =0 имеет отрицательное значение). Напомним, что началом любой синусоиды полагается точка перехода функции из отрицательного значения в положительное значение. Поэтому же начальная фаза тока имеет знак (+), так как синусоида i(t) сдвинута по оси абсцисс влево от начала координат. Таким образом имеем:
u = 141sin (314t– 30о) В,i = 2,82sin (314t + 45о) А.
Синусоидальные функции времени изображаются также комплексными числами которые, по сути, аналитически описывают вращающиеся радиус-векторы на комплексной плоскости, рассматриваемые в момент времени t =0.
Комплексные изображения синусоидальных величин чаще всего записываются для действующих значений. Поэтому в первую очередь определим действующие значения тока и напряжения данной цепи:

Представим u(t) и i(t) в комплексной форме (показательная форма записи комплексных чисел):
, .