если обозначить с(m,n) - число сочетаний n из m, то есть
с(m,n) = m! /(n! *(m-
то общее число вариантов вынуть 5 билетов из 100 равно c(100,5)
при этом, если известно, что в этих 5 билетах ровно к выгрышных и (5 - к) невыгрышных, то число разных вариантов сильно сокращается, и равно числу вариантов вынуть к из 20, умножить на число вариантов выбрать 5 - к из 80 (а почему умножить? на каждый вариант из c(20, к) сочетаний первой группы приходится с(80, 5 - к)
поэтому вероятность попасть в благоприятный исход равна
с(20, к)*с(80, 5 - к)/c(100, 5);
1. в первом случае к = 5, 5 - к = 0, то есть
р = с(20,5)/с(100,5)
2. событие дополнительно событию, когда достали 5 невыгрышных билетов, то есть
1) 70 листов
И. п. семьдесят листов
Р. п. семидесяти листов
Д. п. семидесяти листам
В. п. семьдесят листов
Т. п. семьюдесятью листами
П. п. о семидесяти листах
2) 600 метров
И. п. шестьсот метров
Р. п. шестисот метров
Д. п. шестистам метрам
В. п. шестьсот метров
Т. п. шестьюстами метрами
П. п. о шестистах метрах
3) 300 билетов
И. п. триста билетов
Р. п. трехсот билетов
Д. п. тремстам билетам
В. п. триста билетов
Т. п. тремястами билетами
П. п. о трехстах билетах
если обозначить с(m,n) - число сочетаний n из m, то есть
с(m,n) = m! /(n! *(m-
то общее число вариантов вынуть 5 билетов из 100 равно c(100,5)
при этом, если известно, что в этих 5 билетах ровно к выгрышных и (5 - к) невыгрышных, то число разных вариантов сильно сокращается, и равно числу вариантов вынуть к из 20, умножить на число вариантов выбрать 5 - к из 80 (а почему умножить? на каждый вариант из c(20, к) сочетаний первой группы приходится с(80, 5 - к)
поэтому вероятность попасть в благоприятный исход равна
с(20, к)*с(80, 5 - к)/c(100, 5);
1. в первом случае к = 5, 5 - к = 0, то есть
р = с(20,5)/с(100,5)
2. событие дополнительно событию, когда достали 5 невыгрышных билетов, то есть
р = 1 - с(80,5)/с(100,5)
3. р = с(20, 2)*с(80, 3)/c(100, 5);