В основу классификации анионов легло образование нерастворимых в воде осадков солей бария и серебра. По этой классификации все анионы делят на 3 группы – первая - соли бария, нерастворимые в воде. Групповой реактив – раствор BaCl2, имеющий нейтральную или слабощелочную реакцию. К первой группе относятся – SO42-, SO32-, CO32-, PO43-, SiO32-S2O32-, C2O42-, CrO42-,B4O72-..
2 группа анионов – соли серебра, нерастворимые в воде и в азотной кислоте. Групповой реактив – раствор AgNO3 в присутствииHNO3. Ко 2-ой группе относятся: хлорид-ионCl-, бромид-ионBr-, йодид-ион I-, сульфид-ионS2-. 3-я группа анионов – соли бария и серебра, растворимые в воде. Группового реактива нет. К 3-ей группе относятся: нитрит-ион NO2-, нитрат-ион NO3-, ацетат-ион CH3COO-.
Большинство анионов открываются дробным методом с помощью специфичных реакций, поэтому групповые реактивы применяют только при обнаружении ионов конкретных групп. Это значительно облегчает и ускоряет проведение анализа, т.к. избавляет химиков-аналитиков в случае отрицательной реакции с групповыми реактивами от необходимости искать в растворе анионы данной группы.
1. Если f(x)=a_nx^n+a_{n-1}x^{n-1}+\ldots+a_0=P_n(x) — алгебраический многочлен, то уравнение (3.1) называется также алгебраическим n-й степени:
P_n(x)\equiv a_nx^n+a_{n-1}x^{n-1}+\ldots+a_0=0,(3.3)
где a_n,\ldots,a_0 — действительные числа, коэффициенты уравнения.
График сеточной функции
2. На практике встречаются задачи нахождения корней уравнения f(x_i)=0, левая часть которого задана сеточной функцией y_i=f(x_i),~i=1,2,\ldots,N (рис. 3.2).
Число x_{\ast} есть корень уравнения (3.1) кратности k, если при x=x_{\ast} вместе с функцией f(x) обращаются в нуль ее производные до (k-1)-го порядка включительно, т.е. f(x_{\ast})= f'(x_{\ast})= \ldots= f^{(k-1)}(x_{\ast})=0, а f^{(k)}(x_{\ast})\ne0. Корень кратности к = 1 называется простым. На рис 3.1,с простыми корнями являются x_{\ast1},x_{\ast2},x_{\ast3}, a корни x_{\ast4},x_{\ast5} — кратные.
В соответствии с классическим результатом Галуа алгебраическое уравнение (3.1) при n\geqslant5 не имеет решения в замкнутом (формульном) виде. Сеточные уравнения вообще не имеют формульных решений. Поэтому корни алгебраических (n>2), трансцендентных и сеточных уравнений, как правило, определяются приближенно с заданной точностью.
25*11=275(см^2)-площадь прямоугольника
275см^2=2750дм^2