М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Докажите, что любые два неравных треугольника с соответственно параллельными сторонами гомотетичны.

👇
Ответ:
marimitul
marimitul
01.05.2022

решение к задаче приложено к ответу

Докажите, что любые два неравных треугольника с со

4,7(81 оценок)
Ответ:
fil3853tima
fil3853tima
01.05.2022
Давайте начнем с определения гомотетии. Гомотетией называется такое движение, при котором все точки фигуры располагаются вдоль прямой, проходящей через одну точку, называемую центром гомотетии.

Теперь рассмотрим два треугольника: треугольник А с вершинами A₁, A₂ и A₃, и треугольник Б с вершинами B₁, B₂ и B₃. Мы знаем, что их стороны параллельны.

Для упрощения рассуждений, давайте применим гомотетию к треугольнику А. Возьмем центр гомотетии в точке O и коэффициент гомотетии равным k. Тогда вершины нового треугольника А' после применения гомотетии будут иметь координаты A'₁ = k * A₁, A'₂ = k * A₂ и A'₃ = k * A₃.

Теперь, чтобы доказать, что треугольник А и треугольник Б гомотетичны, необходимо и достаточно показать, что коэффициент гомотетии и центр гомотетии одни и те же для обоих треугольников.

Для этого, давайте рассмотрим отношения длин соответствующих сторон треугольников:

k = AB₁ / A'B₁ = AB₂ / A'B₂ = AB₃ / A'B₃.

Заметим, что каждая длина стороны треугольника Б делится на соответствующую сторону треугольника А одной и той же константой k. Это говорит о том, что треугольник Б является гомотетическим подобным треугольнику А с центром гомотетии O и коэффициентом гомотетии k.

Таким образом, мы доказали, что любые два неравных треугольника с соответственно параллельными сторонами гомотетичны друг другу.
4,7(50 оценок)
Проверить ответ в нейросети
Новые ответы от MOGZ: Другие предметы
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ