Если шарик сплошной, то его плотность должна быть равна плотности меди. 8875 кг/м3 — плотность шарика (ну просто масса, делённая на объём), а у меди — 8900 кг/м3.
А теперь проведём простую аналогию.
Пускай V — объём шарика сплошного, а V_o — полого.
Логично, что V \ \textgreater \ V_o (объём сплошного шара больше, чем у полого).
Тогда сравним плотности:
p_i = \frac{m_i}{V_i}.
Чем меньше объём, тем больше плотность. Следовательно у полого шарика плотность больше, чем у сплошного.
Вернёмся к нашей задаче. Пускай шарик полый, тогда его плотность больше, чем плотность меди. Но у нас у шарика плотность меньше, чем у меди. Следовательно полым он быть не может.
Честно говоря, я даже не представляю как здесь решить по-простому. В задаче многовато неизвестных, которые в одно-два действия и не выразишь.
Дано:
h = 5 см
H = 15 см
Δd = 1,5 см
H' = 10 см
F - ?
Линзу не меняли, значит мы можем приравнять выражения для отношения (1/F) друг к другу:
d' нам известно - оно равняется расстоянию до передвижения d + изменение расстояния Δd:
d' = d + Δd
Тогда выразим f и f' из формулы линейного увеличения линзы (вместо традиционной буквы "Г" я использую букву "G", поскольку редактор уравнений не может прописывать русские буквы):
Подставляем эти выражения в уравнение (1):
Получили значение первичного расстояния между свечой и линзой. Подставляем его в выражение для первичного расстояния f между экраном и линзой:
Возвращаемся к уравнению для обратного фокусного расстояния (1/F), переворачиваем его и подставляем найденные значения:
ответ: 9 см.