М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Bigdaddypro100
Bigdaddypro100
18.02.2021 12:25 •  Физика

Фокусна відстань тонкої збиральної лін:
зи — 5 см, предмет перебуває на відстані
10 см від лінзи.​

👇
Открыть все ответы
Ответ:
Миша3456
Миша3456
18.02.2021
1. Структура электростатического поля
В силу симметрии задачи, электростатическое поле является центрально-симметричны. т.е. \overline E = E(r) \overline r_0
r₀ - единичный радиус-вектор от заряда к произвольной исследуемой точке пространства.
Задача и её решение инвариантна к повороту (как картинку "ни крути" вокруг заряда, условие задачи и её решение не изменится).

2. Поле при отсутствии шара
Когда у нас есть только точечный заряд модуль напряженности электростатического поля E(r) = k\frac{Q}{r^2}.

Потенциал электростатического поля связан с его напряженностью уравнением:
\phi_1-\phi_2 = \int\limits^{2}_{1} {E} \, dl
Интегрирование ведётся по произвольному пути между точками 1 и 2.

Отступление: если домножить уравнение на пробный заряд, то получим определение потенциальной энергии. Правый ингтеграл в этом случае будет работой, совершенной полем над пробным зарядом.

В нашем случае удобно интегрировать вдоль радиальных линий
\phi_1-\phi_2 = \int\limits^{r_2}_{r_1} {E} \, dr

Замечание: Потенциал определяется всегда с точностью до аддитивной постоянной, поэтому во всех задачах всегда выбирается, так называемое, условие нормировки. В разных задачах оно выбирается по разному, но в задачах данного типа принято брать потенциал бесконечно удаленной точки равным нулю \phi_\infty = 0

\phi_1-\phi_\infty = \phi_1 = \int\limits^{\infty}_{r_1} {E} \, dr

Подставим в эту формулу найденное поле:
\phi = \int\limits^{\infty}_{R} {k \frac{Q}{r^2} } \, dr = kQ\int\limits^{\infty}_{R} { \frac{1}{r^2} } \, dr = kQ ( \lim_{r \to \infty} (- \frac{1}{r}) - (- \frac{1}{R} )) = \frac{kQ}{R}
Получили известный результат. Выразим из этого результата заряд Q.
Q= \frac{\phi R}{k}

3. Поле при добавлении шара.
Для поиска величины напряженности воспользуемся теоремой Гаусса.
\int {\int {E} } \, dS = 4\pi kq
Поток вектора напряженности электростатического поля через любую замкнутую поверхность пропорционален величине свободного заряда, находящегося внутри этой поверхности.

Выберем в качестве такой поверхности сферу радиусом r. В силу структуры поля E(r) = const.
\int {\int {E(r)} } \, dS = E(r)\int {\int {} } \, dS =E(r)*4\pi r^2 = 4\pi kq
E(r) = k \frac{q}{r^2}

Теперь рассмотрим отдельные участки:
1) Участок 0 < r < 3R
E(r) = k \frac{Q}{r^2}
2) Участок 3R<r<4R
E(r) = 0 - электростатического поля внутри идеальных проводников не существует. Если предположить противное, то начнётся движение зарядов и это уже не статика. :)
3) Участок r > 4R
E(r) = k \frac{4Q}{r^2}
4Q - суммарный заряд внутри сферы радиусом r.

Аналогично рассчитаем потенциал.
\phi' = \int\limits^\infty_R {E(r)} \, dr = \int\limits^\infty_{4R} {k \frac{4Q}{r^2} } \, dr + \int\limits^{4R}_{3R} {0} } \, dr +\int\limits^{3R}_{R} {k \frac{Q}{r^2} } \, dr = k \frac{4Q}{4R} + k \frac{Q}{R} - k\frac{Q}{3R}

\phi' = k \frac{5Q}{3R}
Подставляем в это выражение найденное ранее Q и имеем:
\phi' = \frac{5}{3}\phi = 500

Что стоит отметить?
1) Потенциал функция непрерывная. Если знать, что подобные симметричные структуры создают поля аналогичные точечным зарядам, то задача решается в уме.
т.е. мы ищем потенциал на внешней границе шара как потенциал точечного заряда 4Q, на внутренней границе он такой же. Ищем разность потенциалов между внутренней границей и точкой A в поле точечного заряда Q.  Складываем результаты.

2) Несмотря на то, что заряд 3Q на шаре поле внутри шара не создаёт, он увеличивает потенциал точек внутри полости, т.к. создаёт дополнительное поле вне шара. Потенциал - это работа по перемещению точечного заряда из бесконечности в данную точку. Больше поле вне шара - больше работа.

3) Разность потенциалов зависит только от локального поля (поля по в окрестности пути, соединяющего две точки). Сам потенциал зависит от структуры всего поля.
4,7(30 оценок)
Ответ:
ilyavip0412
ilyavip0412
18.02.2021
Вынужденные колебания возникают в системе под действием внешней периодической ЭДС.
Если внешняя периодическая ЭДС является гармонической (т.е. изменяется по синусу или косинусу), то возникающие колебания будут гармоническими.
Вынужденные колебания (установившиеся) происходят с частотой вынуждающей силы, их нельзя возбудить за счет ненулевых начальных условий.
Амплитуда вынужденных колебаний зависит от амплитуды вынуждающей ЭДС, от инерциальных (индуктивность) свойств системы и от соотношения частоты вынуждающей силы и собственной частоты колебаний системы.
Наряду с вынужденными колебаниями в системе при наличии ненулевых начальных условий возникают и собственные колебания, которые при наличии сопротивления будут затухающими. Эти колебания происходят с собственной частотой, их амплитуда зависит от начальных условий.
В системе возникают также сопровождающие колебания, которые при наличии сопротивления также будут затухающими. Эти колебания происходят с собственной частотой, но их амплитуда зависит от параметров внешней ЭДС.
При наличии активного сопротивления все колебания, кроме вынужденных колебаний с течением времени затухнут. Т.е. установившиеся колебания являются вынужденными колебаниями и происходят с частотой вынуждающей силы.
Если частота вынуждающей силы мало отличается от частоты собственных колебаний, а активное сопротивление отсутствует, то наблюдаются биения - колебания, амплитуда которых медленно изменяется с течением времени по гармоническому закону.
При приближении частоты вынуждающей ЭДС к частоте собственных колебаний наблюдается явление резонанса, которое заключается в резком увеличении амплитуды вынужденных колебаний.
Резонансная частота зависит от параметров вынуждающей ЭДС, инерциальных свойств системы (индуктивности), собственной частоты и коэффициента затухания.
При наличии сопротивления амплитуда заряда, силы тока достигает максимального значения при различной частоте вынуждающей силы.
При отсутствии сопротивления в случае резонанса амплитуда колебаний монотонно нарастает со временем.
При наличии активного сопротивления, амплитуда колебаний остается конечной величиной.
При действии на систему периодической негармонической ЭДС, резонанс возможен, если период возмущающей силы равен или кратен периоду колебаний системы.
Для силы тока резонанс наступает на собственной частоте $\omega _{0}$ не зависимо от величины затухания.
4,8(54 оценок)
Это интересно:
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ