Материальная точка движется в плоскости x y так, что уравнение её движения имеет вид y(t)=1,55t^2 -1.03,м, x(t)=2.77t,м найти: уравнение траектории точки y(x); модуль скорости и ускорения как функции времени
Зако́н Берну́лли[1] (также уравне́ние Берну́лли[2][3], теоре́ма Берну́лли[4][5] или интегра́л Берну́лли[2][6][7]) устанавливает зависимость между скоростью стационарного потока жидкости и её давлением. Согласно этому закону, если вдоль линии тока давление жидкости возрастает, то скорость течения убывает, и наоборот. Количественное выражение закона в виде интеграла Бернулли является результатом интегрирования уравнений гидродинамики идеальной жидкости[2] (то есть без вязкости и теплопроводности).
Дано: m = 70 кг g = 10 м/ = 10 H/кг a = 3 м/ = 3 Н/кг Найти: P - ? Решение: Fт = m*g; P = Fт + m*a или P = m * (g+a). P = 70 кг * (10 Н/кг + 3 Н/кг) = 910 Н ответ: 910 Н В данной задаче мы складываем ускорения, т.к. они направленны в одном направлении, но если бы они были направлены в противоположные стороны, нужно было бы из ускорения свободного падения (g) вычитать ускорение лифта (а), и еще примечание: Если ускорение лифта направленно противоположно ускорению свободного падения, и по значению больше, то вес тела равен 0.
Зако́н Берну́лли[1] (также уравне́ние Берну́лли[2][3], теоре́ма Берну́лли[4][5] или интегра́л Берну́лли[2][6][7]) устанавливает зависимость между скоростью стационарного потока жидкости и её давлением. Согласно этому закону, если вдоль линии тока давление жидкости возрастает, то скорость течения убывает, и наоборот. Количественное выражение закона в виде интеграла Бернулли является результатом интегрирования уравнений гидродинамики идеальной жидкости[2] (то есть без вязкости и теплопроводности).