Для частных случаев равномерных движений мгновенная скорость всегда равна средней, поскольку в любой момент времени путь l(t) = vt следовательно v ср = l/t = vt/t = v
В общем случае мгновенная скорость может в определенные моменты времени оказываться равной средней скорости по тому или иному промежутку времени. Можно доказать, что прямоугольник, равновеликий криволинейному, ограниченному сверху гладкой непрерывной кривой, и имеющий с ним общее нижнее основание, пересекает верхней стороной эту кривую по крайней мере в одной точке. Но доказательство этого утверждения - скорее математическая, а не физическая проблема.
Я распишу подробно, формулами, в конце выйдем на ответ: длину нужно уменьшить в 4 раза. Мы знаем формулу периода математического маятника: T=2\pi*\sqrt\frac{l}{g};\\ Запишем ее для двух случаев, по условию, что T2=T1/2. T1=2\pi*\sqrt\frac{l1}{g};\\ \frac{T1}{2}=2\pi*\sqrt\frac{l2}{g};\\ Поделим первое уравнение на второе: \frac{T1}{\frac{T1}{2}}=\frac{2\pi*\sqrt\frac{l1}{g}}{2\pi*\sqrt\frac{l2}{g}};\\ 2={\sqrt{\frac{l1}{g}*{\frac{g}{l2};\\ Возводим и правую и левую часть в квадрат: 4=\frac{l1}{g}*\frac{g}{l2};\\ 4=\frac{l1}{l2};\\ 4l2=l1;\\ l2=\frac{l1}{4};\\ То есть, о чем я и говорил изначально, при умешьнении периода колебаний в 2 раза, длину маятника уменьшают в 4 раза.
Линейка
Объяснение: