ответ:L' = ( ∆L ± ½ 0,1 ) см
L' = ( 13,2 ± 0,05 ) cм
Объяснение: а) Определяем цену деления линейки:
1) Для начала находим два ближайших штриха ( на цене деления линейки ) где определены численное значения величины ( например 0 и 1 см ) и вычитаем из большого численного значения меньше ( 1 - 0 = 1 см )
2) Считаем промежутки между черточками на цене деления линейки всего их 10 ( на промежутке от 0 до 1 см ) и делим разницу большего численного значения из меньшего на число промежутков между ними ( то есть 1 ÷ 10 = 0,1 см )
0,1 см – цена деления шкалы
б) Записываем длину нитки с учётом погрешности
1) Сначала запишем просто длину нитки без учёта погрешности
∆L = L - L1
∆L = 15,6 - 2,4 = 13,2 см – длина без учета погрешности
2) Теперь запишем длину нитки с учётом погрешности
Длина нитки с учётом погрешность будет равна длине нитки без учёта погрешности ± половина цены деления линейки , поэтому
L' = ( ∆L ± ½ 0,1 ) см
L' = ( 13,2 ± 0,05 ) cм
Объяснение:
Ускорение свободного падения на поверхности планеты найдем по
формуле
-
,
где 6,67 ∙ 10 Н·м2
/кг2
– универсальная гравитационная
постоянная, M – масса планеты, R – радиус планеты.
Радиус планеты задан, произведение можно выразить из
формулы для первой космической скорости:
,
где – радиус орбиты спутника; отсюда искомое произведение –
.
Подставим в выражение для вычисления -
:
-
.
Расчет позволяет получить значение ускорения свободного падения на
поверхности планеты:
-
12 ∙ 10
∙ 2 ∙ 10
12 ∙ 10
20 м/с
.