При попутном ветре, очевидно, относительно земли скорость голубя равна сумме скорости ветра υ и скорости голубя в отсутствие ветра υ1 , а расcтояние s между будет равно: s = ( υ1 + υ) t1. ( 1) при встречном ветре это же расстояние s птица преодолеет с относительной скоростью, равной разности скоростей голубя и ветра и, соответственно, s = ( υ1 - υ) t2. ( 2) в отсутствие ветра расстояние между голубь пролетит за время t = s/ υ1. ( 3 ) (конечно, (3) можно было записать в том же виде как и два предыдущих соотношения, т.е. s = υ1 t.) решена: мы имеем 3 уравнения с тремя неизвестными, остается только их решить. решать можно, что называется, в любом порядке. приравняв (1) и (2), т.е. исключив расстояние s , мы свяжем скорости υ и υ1: ( υ1 + υ) t1 = ( υ1 - υ) t2 . раскрываем скобки, вновь группируя, получаем: υ1 t1 + υ t1 - υ1 t2 + υ t2 = 0, или υ( t1 + t2 ) = υ1( t2 - t1 ). откуда υ = υ1(t2- t1)/ (t1+ t2). ( 4) далее можно подставить (4) в (2): s = ( υ1 - υ1(t2- t1)/ (t1+ t2)) t2 = υ12t1t2/ (t1+ t2). (5) осталось подставить (5) в (3) и выразить искомое t1: t = 2t1t2/(t1+ t2). отсюда окончательно: t1= t2t/(2t2- t). (6)вычисляем: t1= 75 мин ∙ 60 мин /(2∙75 мин - 60 мин) = 50 мин.ответ: 50 мин.
Минимальная кинетическая энергия будет в верхней точке траектории (в вершине параболы), в этой точке вертикальная составляющая скорости (проекция скорости на вертикальную ось) равна нулю, и, как известно горизонтальная составляющая скорости - постоянна. максимальная кинетическая энергия будет или в начальный момент, или в момент падения. Будем считать, что тело брошено с поверхности земли. Имеем. E_k_min = (m/2)*(v_x)^2; E_k_max = (m/2)*(v0)^2; (v0)^2 = (v0_y)^2 + (v_x)^2; по условию E_k_max = 2*E_k_min; (m/2)*( (v0_y)^2 + (v_x)^2 ) = 2*(m/2)*(v_x)^2; (v0_y)^2 + (v_x)^2 = 2*(v_x)^2; (v0_y)^2 = (v_x)^2; v0_y = v_x; итак: v0_y = v_x; tg(a) = v0_y/v_x = 1; a = arctg(1) = 45 градусов.