Мета: дати поняття електроємності, сформулювати поняття конденсатора та на прикладі плаского конденсатора встановити залежність ємкості від властивостей діелектричної середи та лінійних розмірів конденсатора; навчити учнів розв’язувати задачі комбінованого типу на застосування законів механіки в електричних полях.
1. Електроємність.
2. Конденсатори.
3. Залежність електроємності конденсатора від діелектричної проникності і лінійних розмірів конденсатора
4. Енергія електричного поля
Ключові слова: електроємність, конденсатор, плоский конденсатор, поле конденсатору, енергія конденсатору
Електроємністю провідника С називають чисельну величину заряду, яку необхідно повідомити провідник, щоб змінити його потенціал на одиницю. 
Ємність провідника залежить від його форми, лінійних розмірів і діелектричної проникності середовища, яке оточує провідник, і не залежить від величини розташованого на ньому заряду. Одиницею ємності в системі СІ є фарада (Ф) - ємність провідника, в якому зміна заряду на 1 кулон змінює його потенціал на 1 вольт.
Конденсатором називається система двох (або декількох) різнойменно заряджених провідників з рівними за величиною зарядами. Якщо провідники є паралельними пластинами, то такий конденсатор називається плоским. Ємність плоского конденсатора: ,
де 1- 2 - різниця потенціалів між його пластинками. Ємність характеризує систему обох пластин в їх взаємному розміщенні, а не одну окрему пластину. Ємність плоского конденсатора можна також записати у вигляді: ,
де S - площа однієї з пластин, d - відстань між пластинами (товщина діелектрика). Якщо розміри пластинок набагато більші, ніж відстань між ними, то між пластинами (за винятком країв) створюється однорідне поле:
, де U- різниця потенціалів між пластинками, d- відстань між ними.
Ємність конденсатора, що складається з n пластин 
Ємність кулі радіусу r: C = 4 or
Ємність батареї конденсаторів:
а) при послідовному з'єднанні 
б) при паралельному з'єднанні Спар = С1+С2+...+Сn
Конденсатори за геометричною формою діляться на плоскі, циліндричні та сферичні.
Ємність циліндричного конденсатора рівна:
, де r1 та r2 - це радіуси зовнішнього та внутрішнього циліндрів, а l – це довжина конденсатора.
Ємність сферичного конденсатора рівна:
, де r1 та r2 – це радіуси зовнішньої та внутрішньої сфер конденсатора.
За діелектриком конденсатори діляться на повітряні, паперові, парафінові, слюдяні, керамічні, композитні та інше.
Електричну енергію поля зарядженого провідника We
,
де С - ємність провідника, q - його заряд і - потенціал провідника. Для конденсатора - різниця потенціалів між його пластинками, і С - його ємність.
Объяснение:
Теория распространения упругих (сейсмических) волн базируется на теории упругости, так как геологические среды в первом приближении можно считать упругими. Поэтому напомним основные определения и законы теории упругости применительно к однородным изотропным средам.
Установлено, что под действием внешних нагрузок жидкие и газообразные тела изменяют свои объем и форму, деформируются. При деформации частицы тела смещаются относительно друг друга и исходного положения. Величина и направление перемещений определяются величиной и характером внешних сил и свойствами тела. Положение частиц тела после деформации можно найти, если известен вектор перемещений U(х, у, z), ..При этом изменится длина его ребер, а прежде прямые углы между соответствующими ребрами станут тупыми или острыми. Количественной мерой деформации являются относительные удлинения ребер малого параллелепипеда и абсолютное изменение углов относительно 90°. Таким образом, деформация полностью описывается шестью компонентами. Три первые компоненты называются продольными (нормальными) деформациями, три последние — сдвиговыми.
При снятии нагрузки частицы тела могут вернуться или не вернуться в исходное положение. В первом случае говорят об обратимых, а во втором о необратимых деформациях. Тела, в которых развиваются только обратимые деформации, называют упругими. Тела, в которых развиваются только необратимые деформации.
При деформации в упругом теле возникают внутренние напряжения, обусловленные упругим взаимодействием между частицами тела. На каждую площадку малого размера, мысленно выделяемую в теле, действуют напряжения, имеющие в общем случае одну составляющую, перпендикулярную к площадке, — нормальное напряжение, и две, направленные вдоль площадки, называемые сдвиговыми напряжениями. Три компоненты напряжения задаются с шести компонент тензора напряжения. Эти шесть компонент связаны с шестью компонентами малых деформаций законом Гука.
При одноосном сжатии (растяжении) призмы из твердого тела относительное изменение ее длины вдоль направления действующего напряжения выражается соотношением
где Ω — величина внешней нагрузки; Е — модуль Юнга; Л — длина призмы; ΔЛ — изменение длины.
Опыт показывает, что удлинение призмы всегда сопровождается сокращением ее поперечных размеров a и b на Δa и Δb. Для изотропных тел ΔЛ/Л, Δa/a, Δb/b и (Δa/a)/(Δb/b) = Δ остаются неизменными, независимо от того, каким образом была ориентирована призма в породе, где Δ — коэффициент Пуассона.
Модуль Юнга (E) и коэффициент Пуассона (Δ) полностью определяют упругие свойства таких тел. Для анизотропных сред при неизменной осевой нагрузке относительные удлинения ребер призмы будут зависеть от того, как была ориентирована ось призмы в породе, иными словами, упругие свойства зависят от направления внешних нагрузок. Изотропные тела можно также описать с упругих констант Ламэ — модуля сжатия (λ) и модуля сдвига (µ). Эти модули однозначно связаны с модулем Юнга (Е) и коэффициентом Пуассона (Δ):
При всестороннем сжатии упругих тел, например, путем повышения давления жидкости, в которой расположен образец, объем тел уменьшается. Относительное изменение объема (ΔV/V) при этом линейно связано с давлением:
Коэффициент (kc) называют модулем всестороннего сжатия. Для изотропных тел связь между kc, λ и μ имеет вид
В жидкостях и газах μ = 0 и kc = λ.
Если упругие свойства тел не изменяются при переходе от точки к точке тела, то такие тела называют однородными. В противном случае тело называют неоднородным. В неоднородных изотропных телах λ, μ и kc — функции координат.
При деформации упругого тела под действием внешней нагрузки размеры тела изменяются, например, стержень сжимается. Если при снятии внешней нагрузки вся потенциальная энергия переходит в кинетическую, то тело называют идеально-упругим. Если же часть энергии уходит на необратимые процессы, например, превращается в тепло, то тело называют вязко-упругим, неидеально-упругим.
тел деформироваться является причиной того, что напряжение от зоны действия внешней нагрузки распространяется на все области тела с конечной скоростью, определяемой упругими модулями и плотностью. Распространяющееся в упругом теле напряжение порождает деформации — перемещения частиц тела, которые можно измерить. Наблюдения за перемещением частиц тела позволяют экспериментально измерять скорости распространения упругих волн и выявлять различия в физических свойствах горных пород или их состоянии.
4.2.2. УПРУГИЕ ВОЛНЫ В БЕЗГРАНИЧНЫ
Нет, не может
Объяснение:
Если существует различие между зарядами электрона и протона, то Землю можно считать равномерно заряженным шаром с объемной плотностью заряда, равной:
где n - концентрация атомов:
Заряд одного атома:
Тогда, объемная плотность заряда:
Заряд всей Земли:
По аналогии с расчетом момента инерции шара, распределенный заряд также можно сконцентрировать вдоль кольца, с радиусом равным радиусу Земли и величиной:
Линейная плотность заряда такого кольца:
За единицу времени, через фиксированное поперечное сечение кольца проходит заряд (он же ток, создаваемый кольцом):
Произведение ωR есть не что иное, как линейная скорость точек на экваторе, равная 465 м/с, таким образом, ток:
Оценим создаваемое им в центре магнитное поле:
Сравнивая это значение с фактическим, видим, что оно на два порядка меньше, значит различие между зарядами электрона и протона, даже если бы оно было, не смогло бы создать магнитного поля Земли.