1Для начала рассмотрите мензурку, какие единицы объема на ней указаны. Чаще всего это миллилитры или кубические сантиметры, но могут быть и другие величины, к примеру литры. Определите цену деления прибора по алгоритму. Выберите два близлежащих подписанных численными значениями штриха, отнимите из большего числа меньшее и разделите его на количество делений, расположенных между этими числами. Пример 1. Произвольно выбраны два соседних подписанных штриха: 20 и 10. Разность этих чисел равна: 20 мл - 10 мл = 10 мл. Делений между этими штрихами 10. Значит, цена деления мензурки равна 1 мл, так как 10 мл/10 = 1 мл. 2Налейте в мензурку столько воды, чтобы в нее полностью поместилось данное твердое тело. Обязательное условие - тело должно тонуть в воде или плавать внутри нее, иначе будет определен объем только той части тела, которая скрылась под водой. Зная цену деления, измерьте, сколько воды налито в мензурке (V1). Пример 2. Пусть надо измерить объем гвоздя. В мензурке 20 миллилитров воды. V1=20 миллилитров. 3Привяжите нить к телу и осторожно опустите его в воду, не кидая, чтобы не разбить дно сосуда. Замерьте, сколько воды стало в мензурке (V2). Найдите разницу объемов конечного и первоначального: V2 - V1. Полученное число и есть объем данного твердого тела. Измерять объем следует в тех же единицах, что и объем воды, то есть в единицах, указанных на измерительном цилиндре. Пример 2. После того, как тело опущено в воду, объем вырос до 27 миллилитров. V2 = 27 миллилитров. Объем тела равен: 27 миллилитров - 20 миллилитров = 7 миллилитров.
1. Пусть полная энергия частицы отрицательна (W1< 0), тогда неравенство Wp(r) £ W1 = const выполняется на отрезке от х=А до х=С (отрезок АС).
Следовательно, частица всегда находится внутри "потенциальной ямы" - движение является финитным, кроме того, будет периодически повторяться, т.е. частица совершает колебательное периодическое движение.
Точки х=А и х=С, для которых выполняется равенство Wp(r) = W1, являются граничными.
Графически эти точки определяются пересечением горизонтальной прямой с графиком функции и являются корнями уравнения , например, в точке А:
W1 = Wp(A) = mv2 / 2 + Wp(A),
т.е. в точке поворота скорость частицы обращается в нуль.
Таким образом, границы движения классической частицы определяются значением полной энергии.
Например, если (рис. 4.14), то движение частицы станет инфинитным. В точке В (рис. 4.14) для данной частицы потенциальная энергия минимальна: Wp(Б)=Wp,min. В потенциальном силовом поле на частицу действует возвращающая сила Fx = - dWp/ dx и в точке Б она обращается в нуль, а в крайних точках А и С на частицу действует максимальная сила. Поэтому точке Б соответствует минимум потенциальной энергии, который определяет положение устойчивого равновесия.
Объяснение: