ФИЗИКА 9 КЛАСС. ЛУЧШИЙ ОТВЕТ И ПОДПИСКУ ОБЕЩАЮ.
1)взаимодействие каких величин описывает правило левой руки? изобразите однородное поле, направленное справа налево и проводник, в котором ток идет от нас. дорисуйте недостающий вектор.
2) определитеопределите по формулам название физической величины, для вычисления которых они применяются:
а) В*S*cosa
б) Ф/t
в) В*q*v
3) фото
4)фото
5) за 7 секунд магнитный поток, пронизывающий проволочную рамку, уменьшился с 6 до 1.8Вб. почему при этом равно значение ЭДС индукции?
6) определить время переходного процесса, если э.д.с. самоиндукции равна 5В, а ток в катушке с индуктивностью 0,2 гн уменьшился с 4,15 до 3,9 А.
7) чемучему равен поток вектора магнитной индукции через поверхность, ограниченную рамкой, площадью 0.45м2, еслиесли плоскость рамки расположена под углом 45 градусов к вектору В, а В=0.4тл
8) выберитевыберите, какие из предложенных частиц могут создавать магнитное поле и объясните, почему: молекула, ион, электрон, атом, протон.

Рис. 2.11
Соленоид можно представить в виде системы одинаковых круговых токов с общей прямой осью.
Бесконечно длинный соленоид симметричен любой, перпендикулярной к его оси плоскости. Взятые попарно (рис. 2.12), симметричные относительно такой плоскости витки создают поле, в котором вектор  перпендикулярен плоскости витка, т.е. линии магнитной индукцииимеют направление параллельное оси соленоида внутри и вне его.

Рис. 2.12
Из параллельности вектора  оси соленоида вытекает, что поле как внутри, так и вне соленоида должно быть однородным.
Возьмём воображаемый прямоугольный контур 1–2–3–4–1 и разместим его в соленоиде, как показано на рисунке 2.13.
Второй и четвёртый интегралы равны нулю, т.к. вектор  перпендикулярен направлению обхода, т.е  .
Возьмём участок 3–4 – на большом расстоянии от соленоида, где поле стремится к нулю; и пренебрежём третьим интегралом, тогда

где  – магнитная индукция на участке 1–2 – внутри соленоида,  – магнитная проницаемость вещества.
Если отрезок 1–2 внутри соленоида, контур охватывает ток:

где n – число витков на единицу длины, I – ток в соленоиде (в проводнике).
Тогда магнитная индукция внутри соленоида:
, (2.7.1)
Вне соленоида:
 и  , т.е.  .
Бесконечно длинный соленоид аналогичен плоскому конденсатору – и тут, и там поле однородно и сосредоточено внутри.
Произведение nI – называется число ампер витков на метр.
У конца полубесконечного соленоида, на его оси магнитная индукция равна:
, (2.7.2)
Практически, если длина соленоида много больше, чем его диаметр, формула (2.7.1) справедлива для точек вблизи середины, формула (2.7.2) для точек около конца.
Если же катушка короткая, что обычно и бывает на практике, то магнитная индукция в любой точке А, лежащей на оси соленоида, направлена вдоль оси (по правилу буравчика) и численно равна алгебраической сумме индукций магнитных полей создаваемых в точке А всеми витками. В этом случае имеем:
· В точке, лежащей на середине оси соленоида магнитное поле будет максимальным:
, (2.7.3)
где L – длина соленоида, R – радиус витков.
· В произвольной точке конечного соленоида (рис. 2.14) магнитную индукцию можно найти по формуле
, (2.7.4)

Рис. 2.14
На рисунке 2.15 изображены силовые линии магнитного поля  : а) металлического стержня; б) соленоида; в) железные опилки, рассыпанные на листе бумаги, помещенной над магнитом, стремятся вытянуться вдоль силовых линий; г) магнитные полюсы соленоида.