Корпускулярно-волновой дуализм (или квантово-волновой дуализм) — свойство природы, состоящее в том, что материальные микроскопические объекты могут при одних условиях проявлять свойства классических волн, а при других — свойства классических частиц.
Типичные примеры объектов, проявляющих двойственное корпускулярно-волновое поведение — электроны и свет; принцип справедлив и для более крупных объектов, но, как правило, чем объект массивнее, тем в меньшей степени проявляются его волновые свойства[4] (речь здесь не идёт о коллективном волновом поведении многих частиц, например, волны на поверхности жидкости).
Идея о корпускулярно-волновом дуализме была использована при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. В действительности квантовые объекты не являются ни классическими волнами, ни классическими частицами, проявляя свойства первых или вторых лишь в зависимости от условий экспериментов, которые над ними проводятся. Корпускулярно-волновой дуализм необъясним в рамках классической физики и может быть истолкован лишь в квантовой механике[5].
Дальнейшим развитием представлений о корпускулярно-волновом дуализме стала концепция квантованных полей в квантовой теории поля.
Объяснение:
Мир квантовой физики трудно понять с точки зрения здравого смысла. Материя может быть одновременно сконцентрирована в одной точке и размазана в Тому и другому имеются экспериментальные доказательства, но есть свидетельства ещё более загадочных явлений.
Корпускулярно-волновой дуализм
Фотон обладает одновременно свойствами частицы и волны. Это явление обозначается термином «корпускулярно-волновой дуализм». Великий Исаак Ньютон считал, что свет является потоком частиц, но уже его современник Христиан Гюйгенс находил у света волновые свойства. Борьба двух теорий продолжалась практически до ХХ века, когда выяснилось, что они обе справедливы.
Эксперимент Юнга
Чтобы доказать волновую природу света в 1803 году английский учёный Томас Юнг провёл свой знаменитый эксперимент с двумя щелями. На самом деле щелей было три. Свет от источника направляется на щель, прорезанную в металлическом листе, и таким образом, из него вырезается один узкий луч. Это нужно для того, чтобы создать два когерентных источника излучения. В другом таком же листе, прорезаются две параллельные щели с ровными краями. Ширина щелей сравнима с длиной световой волны. Перпендикулярно плоскости второго листа на них посылается расходящийся конус света от первой щели.
1. После шторма на море обычно бывает туман; устанавливается динамическое равновесие: часть водяных паров конденсируется у поверхности воды. При этом выделяется довольно большое количество энергии (теплота конденсации) - поэтому температура слоя воды возрастает.
2. Внутренняя энергия воды увеличилась, ведь это сумма энергии движения(кинетическая) и взаимодействия(потенциальная) частиц. Раз среда(вода) возмущена, что как следствие образует волны(не колебания, а именно волны, разница в том что волны переносят энергию на расстояние, а колебания - нет). Процесс изобарический(при постоянном объеме), тогда количество теплоты выделявшееся в результате появления волн будет равно изменению внутренней энергии: Q=U2-U1. А раз внутренняя энергия изменилась(скорость движения частиц увеличилась), то и выделится большее количество теплоты. Очевидно, что температура при этом повысится.
Итак, цепочка такая: возмущения-волны-увеличение внутренней энергии-повышение температуры
Відповідь:
Якщо з"єднання послідовне,то R сум.=R1++..R6=88 ом.,якщо схема змішана, то без схеми нічого не побачиш, далі
I=U/R= 24/88=0.3 A
Пояснення: