ответ:
векторное описание движения является полезным, так как на одном чертеже всегда можно изобразить много разнообразных векторов и получить перед глазами наглядную «картину» движения. однако всякий раз использовать линейку и транспортир, чтобы производить действия с векторами, трудоёмко. поэтому эти действия сводят к действиям с положительными и отрицательными числами – проекциями векторов.
проекцией вектора на ось называют скалярную величину, равную произведению модуля проектируемого вектора на косинус угла между направлениями вектора и выбранной координатной оси.
на левом чертеже показан вектор перемещения, модуль которого 50 км, а его направление образует тупой угол 150° с направлением оси x. пользуясь определением, найдём проекцию перемещения на ось x:
sx = s · cos(α) = 50 км · cos( 150°) = –43 км
поскольку угол между осями 90°, легко подсчитать, что направление перемещения образует с направлением оси y острый угол 60°. пользуясь определением, найдём проекцию перемещения на ось y:
sy = s · cos(β) = 50 км · cos( 60°) = +25 км
как видите, если направление вектора образует с направлением оси острый угол, проекция положительна; если направление вектора образует с направлением оси тупой угол, проекция отрицательна.
на правом чертеже показан вектор скорости, модуль которого 5 м/с, а направление образует угол 30° с направлением оси x. найдём проекции:
υx = υ · cos(α) = 5 м/c · cos( 30°) = +4,3 м/с
υy = υ · cos(β) = 5 м/с · cos( 120°) = –2,5 м/c
гораздо проще находить проекции векторов на оси, если проецируемые векторы параллельны или перпендикулярны выбранным осям. обратим внимание, что для случая параллельности возможны два варианта: вектор сонаправлен оси и вектор противонаправлен оси, а для случая перпендикулярности есть только один вариант.
проекция вектора, перпендикулярного оси, всегда равна нулю (см. sy и ay на левом чертеже, а также sx и υx на правом чертеже). действительно, для вектора, перпендикулярного оси, угол между ним и осью равен 90°, поэтому косинус равен нулю, значит, и проекция равна нулю.
проекция вектора, сонаправленного с осью, положительна и равна его модулю, например, sx = +s (см. левый чертёж). действительно, для вектора, сонаправленного с осью, угол между ним и осью равен нулю, и его косинус «+1», то есть проекция равна длине вектора: sx = x – xo = +s .
проекция вектора, противонаправленного оси, отрицательна и равна его модулю, взятому со знаком «минус», например, sy = –s (см. правый чертёж). действительно, для вектора, противонаправленного оси, угол между ним и осью равен 180°, и его косинус «–1», то есть проекция равна длине вектора, взятой с отрицательным знаком: sy = y – yo = –s .
на правых частях обоих чертежей показаны другие случаи, когда векторы параллельны одной из координатных осей и перпендикулярны другой. предлагаем вам убедиться самостоятельно, что и в этих случаях тоже выполняются правила, сформулированные в предыдущих абзацах.
объяснение:
В абиссинском насосе уровень воды над поршнем ограничен сливным отверстием — выше этого уровня вода не поднимется, т.к. выльется через это отверстие.
Кстати, рабочий ход у этого насоса — движение поршня вверх. При движении вниз происходит лишь перепуск воды через клапан в поршне.
В насосе с воздушным клапаном воды над поршнем нет. Оба движения поршня являются рабочими. При движении поршня вверх происходит всасывание воды. При движении вниз происходит выброс воды под давлением этого же поршня. Всасывание может происходить с глубины не больше 10,3 м. А вот подъём воды после насоса может быть и больше. (Зависит от конструкции — уплотнения поршня в цилиндре, площадью поршня… и ограничен усилием на поршне).Такой насос не создаёт на выходе напора воды. Под сливную трубу надо подставлять ведро.
А вот насос с воздушной камерой создаёт непрерывный напорный поток воды за счёт сжатого воздуха в камере. К сливной трубе можно, например, присоединить шланг для полива