Постоянный магнит — изделие, изготовленное из ферромагнетика сохранять остаточную намагниченность после выключения внешнего магнитного поля. В качестве материалов для постоянных магнитов обычно служат железо, никель, кобальт, некоторые сплавы редкоземельных металлов (как, например, в неодимовых магнитах), а также некоторые естественные минералы, такие как магнетиты. Постоянные магниты применяются в качестве автономных (не потребляющих энергии) источников магнитного поля. Свойства магнита определяются характеристиками размагничивающего участка петли магнитного гистерезиса материала магнита: чем выше остаточная индукция Br и коэрцитивная сила Hc, тем выше намагниченность и стабильность магнита. Характерные поля постоянных магнитов — до 1 Тл (10 кГс).
Электромагнит — устройство, магнитное поле которого создаётся только при протекании электрического тока. Как правило, это катушка-соленоид, со вставленным внутрь ферромагнитным (обычно железным) сердечником с большой магнитной проницаемостью {\displaystyle \mu \simeq 10000}. Характерные поля электромагнитов 1,5—2 Тл определяются так называемым насыщением железа, то есть резким спадом дифференциальной магнитной проницаемости при больших значениях магнитного поля.
Температура является количественной мерой интенсивности движения молекул/атомов вещества. Чем выше температура вещества, тем быстрее двигаются его молекулы/атомы.
Испарение представляет собой процесс перехода молекул из поверхностного слоя жидкости в газ. Для осуществления такого перехода молекула должна преодолеть силы притяжения, действующие на нее со стороны других молекул. Чем быстрее движется молекула, тем вероятнее она перейдет из жидкости в газ. Т.о. с повышением температуры увеличивается вероятность перехода молекул из жидкости в пар в результате повышения их энергии. Значит скорость испарения будет возрастать.