На графике зависимость скорости от времени.
V=Vo + a*t или V=at + Vo
Вспомним из математики у=кх + в и сравним.
Если у=кх, а в=0, то график идет через начало координат. "в" показывает, на сколько график поднят или опущен.
у=2х и у=5х
Здесь разные "к". Графики идут под разным углом к оси ох.
Но если "к" одинаковые, то графики параллельны.
Прямые у=3х + 5 и у=3х - 2 параллельны.
У нас:
у - V
k - a (ускорение)
x - t
в - Vo
Графики V=5t + 2; V=5t + 8; V=5t все параллельны, ускорения у всех одинаковые, а начальные скорости разные. Поэтому:
А) верно, т.к. графики параллельны.
Б) верно. Скорость увеличивается, ускорение "а" > 0.
В) неверно. Графики идут под разным углом, ускорение разное, хотя у обоих тел скорость растет.
Г) неверно. Если тело движется равномерно, то скорость не меняется, график идет параллельно оси ot.
ответ: верны А и Б.
поэтому можно получить по крайней мере три способа определения массы тела в невесомости.
1.можно аннигилировать (перевести всю массу в энергию) исследуемое тело и измерить выделившуюся энергию -- по соотношению эйнштейна получить ответ. (годится для малых тел -- например, так можно узнать массу электрона) . но такого решения не должен предлагать даже плохой теоретик. при аннигиляции одного килограмма массы выделяется 2·1017 джоулей тепла в виде жесткого гамма излучения
2.с пробного тела измерить силу притяжения, действующую на него со стороны исследуемого объекта и, зная расстояние по соотношению ньютона, найти массу (аналог опыта кавендиша) . это сложный эксперимент, требующий тонкой методики и чувствительного оборудования, но в таком измерении (активной) гравитационной массы порядка килограмма и более с вполне приличной точностью сегодня ничего невозможного нет. просто это серьезный и тонкий опыт, подготовить который вы должны еще до старта вашего корабля. в земных лабораториях закон ньютона проверен с прекрасной точностью для относительно небольших масс в интервале расстояний от одного сантиметра примерно до 10 метров.
3.подействовать на тело с какой -- либо известной силой (например прицепить к телу динамометр) и измерить его ускорение, а по соотношению найти массу тела (годится для тел промежуточного размера) .
4.можно воспользоваться законом сохранения импульса. для этого надо иметь одно тело известной массы, и измерять скорости тел до и после взаимодействия.
5.лучший способ взвешивания тела - измерение/сравнение его инертной массы. и именно такой способ часто используется в измерениях (и не только в невесомости) .
из курса , грузик, прикрепленный к пружинке, колеблется с вполне определенной частотой: w = (k/m)1/2, где k - жесткость пружинки, m - масса грузика. таким образом, измеряя частоту колебаний грузика на пружинке, можно с нужной точностью определить его массу. причем совершенно безразлично, есть невесомость, или ее нет. в невесомости удобно держатель для измеряемой массы закрепить между двумя пружинами, натянутыми в противоположном направлении.
в реальной жизни такие весы используются для определения влажности и концентрации некоторых газов. в качестве пружинки используется пьезоэлектрический кристалл, частота собственных колебаний которого определяется его жесткостью и массой. на кристалл наносится покрытие, селективно поглощающее влагу (или определенные молекулы газа или жидкости) . концентрация молекул, захваченных покрытием, находится в определенном равновесии с концентрацией их в газе. молекулы, захваченные покрытием, слегка меняют массу кристалла и, соответственно, частоту его собственных колебаний, которая определяется электронной схемой (помните, я сказал, что кристалл .такие "весы" чувствительны и позволяют определять малые концентрации водяного пара или некоторых других газов в воздухе.