М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
FrutikFresh
FrutikFresh
14.02.2022 23:35 •  Физика

Обмотка ротора генератора має 1000 витків і обертається з частотою 600 об/хв. Рівняння зміни з часом магнітного потоку в СІ Ф=10-3cos(100πt)

1 частота змінного струму, що виробляє генератор 2 максимальна ЕРС індукції
3 кількість пар магнітних полюсів
4 миттєве значення ЕРС через 0,01 с

А 314 Б 5 В 50 Г 220 Д 0

До ть, будь ласка!

👇
Открыть все ответы
Ответ:
KarinaFelton
KarinaFelton
14.02.2022

Альтернативные источники энергии – это приборы , устройства, или сооружения, позволяющие получать электрическую энергию (или другой требуемый вид энергии) и заменяющие собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле.

        К таким источникам энергии относят: энергию Солнца, ветра, тепла Земли, энергию морей и океана, биомассу, новые виды жидкого и газообразного топлива, представленные синтетической нефтью на основе угля, органической составляющей горючих сланцев и битуминозных пород, а также некоторые виды топливных спиртов и водород.

        Многие из нетрадиционных источников энергии являются сложными энергоресурсами, компоненты которых позволяют получать и нетопливную продукцию, широко применяемую в химии, строительной индустрии, сельском хозяйстве, металлургии и т.д.

        Основное преимущество альтернативных источников энергии является неисчерпаемость и экологическая чистота. Их использование не изменяет экологический баланс планеты. Такие источники энергии играют значительную роль в решении трех глобальных проблем, стоящих перед человечеством: энергетики, экологии, продовольствия.

1.2. Солнечная энергетика

Солнце как источник энергии

Солнце является основным источником всех видов энергии, которыми человек имеет в своем распоряжении. Этот резервуар неисчерпаем. Достаточно сказать, что в течение 1,1*109 лет Солнце израсходует всего лишь около 2% аккумулированной в нём энергии.

        Наша Земля, находясь в среднем на расстоянии 149 млн.км от Солнца, не получает и половины одной миллионной доли потока энергии излучаемой Солнцем. Кроме того, в среднем около 40% этой падающей энергии отражается на границе земной атмосферы обратно в межзвездное пространство. Тем не менее общее количество лучистой энергии, достигающее поверхности Земли в области суши, составляет за год 9,5*1017 кВт/ч. Это огромное количество энергии, непрерывно приходящее на поверхность Земли от Солнца в течение года, в 32 000 раз больше той энергии, которая поступает за это время в мировую энергетическую систему от разных источников энергии, таких, как минеральное топливо, гидроэнергия и пр.

История развития.

Пращурами, отцами солнечной энергетики на нашей планете следует считать французского физика Александра Эдмона Беккереля, электрика-изобретателя из Нью-Йорка Чарльза Фриттса, а также знаменитого Альберта Эйнштейна, обладателя Нобелевской премии. Первый, ещё в 1839 году заметил фотоэффект, представляющий собой излучение электронов под воздействием солнечного света. Второй, 44 года спустя, создал первый солнечный модуль — покрытый тонким слоем золота селен. КПД этой первой солнечной батареи был весьма низок — около 1%. Но это был первый шаг. В 1905 году Эйнштейн получает Нобелевскую премию как раз за доработку идей Беккереля. В 30-х годах века отечественные учёные под руководством академика А.Ф. Иоффе создали первые солнечные сернисто-таллиевые элементы. КПД их тоже был низок. Однако работы над солнечными батареями продолжились. В начале 50-х годов ХХ века, в США, в лаборатории компании Bell Telephone, Джеральд Пирсон со товарищи установил, что кремний с определённым покрытием заметно более чувствителен к солнечному свету, чем селен. В итоге была создана солнечная ячейка-батарея с КПД около 6% — началась эра развития солнечных батарей.

В 1957 году в СССР был запущен первый искусственный спутник с применением фотогальванических элементов, а в 1958 г. США произвели запуск искусственного спутника Explorer-1 с солнечными панелями. С 1958 года кремниевые солнечные батареи стали основным источником энергии для космических кораблей и орбитальных станций. Во время нефтяного кризиса 1973-74 гг. сразу несколько стран запустили программы по использованию фотоэлементов, что привело к установке и опробованию свыше 3100 фотоэлектрических систем только в Соединенных Штатах. Многие из них до сих пор находятся в эксплуатации.

        Очередной всплеск интереса к солнечной энергетике пришелся на нефтяной кризис 1973–1974 годов, когда многие страны лихорадочно бросились искать альтернативные источники энергии.  Только в США за это время было установлено более 3000 фотоэлектрических систем.  Производились солнечные часы и калькуляторы, строились дома, использующие исключительно энергию солнца.

Первая попытка производства солнечной энергии в промышленных масштабах была предпринята в США, где в 1981 году заработала гелиотермальная электростанция в пустыне Мохаве. Ее площадь составляла 83 тысячи квадратных метров, а мощность – 10МВт. Удачный опыт ее использования дальнейшему развитию солнечной энергетики

 

4,6(47 оценок)
Ответ:
дашуля298
дашуля298
14.02.2022

Диапазон до 400 Герц применяется промышленными установками. На них происходит трансформация и преобразование энергии. А так же в гидроакустике (подводная локация), эхолокации.

Звуковой диапазон 300-2500 Герц. Используется для низкочастотной передачи звука, а так же передачи телеграфных сообщений в ТЧ каналах.

Сверхдлинные волны 3.10^2-3.10^4 Герц. В основном используется для дальней навигации.

Длинные волны  3.10^4-3.10^5 Герц.  Так же применяются для дальней радиосвязи на расстояние до двух тысяч километров и в радионавигации.

Средние волны  3.10^5-3.10^6  Герц. Используются в морской радиосвязи, радиовещании (последнее время очень мало) и радионавигации.

Короткие волны 3.10^6-3.10^7 Герц.  Короткие волны широко применяются для радиосвязи и радиовещания (КВ диапазон).

Ультракороткие волны  3.10^7-3.10^9 Герц.  УКВ-диапазон используется для стереофонического радиовещания с частотной модуляцией  (Все современные приемники работают в этом диапазоне частот)

Сверхвысокочастотные  3.10^9-3.10^10 Герц. Используются для передачи телевизионных каналов.

Сверхвысокочастотные  3.10^10-3.10^11 Герц. В основном используются для работы РЛС (Радиолокационных станций)

Инфракрасное излучение 3.10^11-3.10^14 Герц.  Инфракрасное излучение составляет большую часть излучения ламп накаливания и газоразрядных ламп. Также используется в обогревателях

Видимый свет 3.10^14-3.10^15 Герц.

Ультрафиолетовое излучение 3.10^15-3.10^17 Герц. Всякого рода солярии и медицинские лампы ультрафиолетового излучения. Так как малые дозы ультрафиолетового излучения оказывают благотворное действие на человека и животных.

Рентгеновское излучение 3.10^17-3.10^20 Герц. Опять же в медицинском оборудовании. Флюорография, рентген и тд.

Гамма-излучение 3.10^20-3.10^22 Герц. возникающее при распаде радиоактивных ядер и элементарных частиц. Гамма-излучение обладает большой проникающей Оно применяется при гамма-дефектоскопии (контроле изделий просвечиванием гамма-лучами), консервировании пищевых продуктов, стерилизации медицинских материалов и оборудования, лучевой терапии.

4,5(34 оценок)
Это интересно:
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ