Распишем уравнения движения каждого автомобиля: S1 = Vo * t1 + a1*(t1)^2 / 2 S2 = Vo * t2 + a2*(t2)^2 / 2 В условии сказано, что они "выходят", значит, начальная скорость равна нулю. Также в условии сказано, что ускорения у них равны: S1 = a*(t1)^2 / 2 S2 = a*(t2)^2 / 2 Нам необходимо такое расположения автомобилей, в котором расстояние между ними равно 70 м: S2 - S1 = 70 м Занесем все в общую формулу: S2 - S1 = a*(t2)^2 / 2 - a*(t1)^2 / 2 = 70 (м) Вместо t2 подставим t1 + 10c: a*(t1 + 10)^2 / 2 - a*(t1)^2 / 2 = 70 Немного математики: (a*(t1 + 10)^2 - a*(t1)^2)/ 2 = 70 - под общий знаменатель (a*(t1^2 + 20*t1 + 100) - a*(t1)^2) / 2 = 70 (a* (t1)^2 + a*20*t1 + 100*a - a * (t1)^2) / 2 = 70 a*20*t1 +100*a = 140 Подставим значение а: 0,2*20*t1 + 100 * 0,2 = 140 4*t1 = 120 t1 = 30 c ответ: 30с
Пусть и ослик и автомобиль движутся равномерно (трения нет, дорога прямая и ровная) Тогда нам понадобиться только одна формула для равмномерного движения по прямой: S=v*t, где S - путь, v - скорость, t - время.
1) Пусть ослик побежал назад, тогда они встретятся в начале моста: ослик: 3*L/8=Vос*t, где Vос - искомая скорость ослика. автомобиль: x=V*t, где x - расстояние, которое проехал автомобиль до моста (мы его не знаем) Из одного уравнения выразим время и подставим в другое: 3*L/8=Vос*x/V - (уравнение 1) L - длина моста 2) Пусть теперь ослик бежит вперед: ослик: 5*L/8=Vос*t2, автомобиль: x2=V*t2, Подставляем теперь t2: 5*L/8=Vос*x2/V - (уравнение 2) 3) Вычтем из второго уравнения первое: 2*L/8=Vос*(x2-x)/V Путь автомобиля можно представить так x2=x+L, значит x2-x=L Подставляем: L/4=Vос*L/V, теперь L сокращается, окончательно получаем: Vос=V/4 ответ: Vос=V/4
22,4 Н
Объяснение:
S1/S2 = F1/F2
F1= 672000:1000 = 672 H
S1/S2 = 300:10 =30 см2
30 см2 = F1/F2
F2 = F1:30 = 672:30 = 22,4 H