Объём куска бронзы равен 1 дм3. Вычисли, какая выталкивающая сила будет на него действовать при полном его погружении в бензин. Плотность жидкости ρж=700кг/м3, g=9,8 Н/кг
Уравнение движения первого тела x1=-v0t+0.5at^2; a=g*sin(b), b- угол наклона плоскости. для второго тела x2=v0t+0.5at^2; Скорость первого тела равна: v1=x1'=-v0+at1; В момент остановки она равна нулю: v0=at1; Отсюда t1=v0/a; Находим расстояния, пройденные телами за это время t1; x1=-v0*v0/a+0.5a*v0^2/a^2; x1=-v0^2/a+0.5v0^2/a; x1=-0.5v0^2/a; (нас интересует отношение расстояний, поэтому берём модуль числа) x1=0.5v0^2/a;
x2=v0*v0/a+0.5a*v0^2/a^2; x2=1.5v0^2/a;
x2/x1=(1.5v0^2/a)/(0.5v0^2/a); x2/x1=3. Второе тело путь в три раза больше, чем первое.
При условии что расстояние между его частями не изменяется при действии на него сил, т.е. форма и размеры твёрдого тела не меняются при действии на его любых сил. Конечно все тела в природе в той или иной мере деформируемы, но в тех случаях, когда деформации малы, можно реальные тела рассматривать как абсолютно твёрдые. При рассмотрении движения Земли вокруг Солнца ее можно считать абсолютно твердым телом и даже материальной точкой, хотя в действительности она не твердая, так как на ней есть океаны, воздушная оболочка и т. д.
для второго тела x2=v0t+0.5at^2;
Скорость первого тела равна: v1=x1'=-v0+at1; В момент остановки она равна нулю: v0=at1; Отсюда t1=v0/a;
Находим расстояния, пройденные телами за это время t1;
x1=-v0*v0/a+0.5a*v0^2/a^2;
x1=-v0^2/a+0.5v0^2/a;
x1=-0.5v0^2/a; (нас интересует отношение расстояний, поэтому берём модуль числа) x1=0.5v0^2/a;
x2=v0*v0/a+0.5a*v0^2/a^2;
x2=1.5v0^2/a;
x2/x1=(1.5v0^2/a)/(0.5v0^2/a);
x2/x1=3. Второе тело путь в три раза больше, чем первое.