1.как направлен вектор мгновенной скорости в различных точках траектории движения тела, брошенного горизонтально? 2.является ли криволинейное движение шарика движением с постоянным ускорением? почему?
Дано: Решение. v₁ = 8 км/ч v₂ = 16 км/ч S = 48 км ========== t = ?
Четвертый идет пешком, трое едут 12 км и оставляют один велосипед. третий идет пешком, двое уезжают и едут еще 12 км (всего 24), где оставляют еще один велосипед. Второй идет пешком, первый проезжает еще 12 км (всего 36), где оставляет велосипед и идет пешком уже до базы.
Вариант предпочтительнее тем что в этом случае все четверо проходят одинаково минимальное расстояние пешком и проезжают одинаково максимальное расстояние на велосипеде. Очевидно, что в этом случае время движения всей группы до базы будет минимальным. Проверим: Четвертый, пока трое других едут 12 км за время t₁ = 12/16 = 3/4 (ч) пройдет пешком расстояние S₁ = v₁t₁ = 8 * 3/4 = 6 (км) после чего, пройдя еще 6 км за 3/4 часа сядет на оставленный третьим велосипед и поедет до базы: S₁' = S -S₁ = 48 - 12 = 36 (км) Время на это у него уйдет: t₁' = S₁'/v₂ = 36 : 16 = 2 1/4 (ч) = 2 ч 15 мин
У третьего маршрут будет выглядеть так: 12 км на велосипеде, 12 км пешком до велосипеда, оставленного вторым и 24 км на велосипеде до базы. У второго: 24 км на велосипеде, 12 км пешком до велосипеда, оставленного первым, и 12 км на велосипеде до базы. У первого: 36 км на велосипеде, 12 км пешком до базы. Средняя скорость движения каждого туриста при этом составит почти 15 км/ч:
Поскольку все четверо пройдут одинаковое расстояние пешком и проедут одинаковое расстояние на велосипеде, то общее время движения группы будет равняться времени движения одного туриста и составит: t = t₁ + t₁' = 2 * 3/4 + 2 1/4 = 3 3/4 (ч) = 3 часа 45 мин.
Против течения моторная лодка плывет медленнее чем в стоячей воде зато по течению быстрее. где удастся скорее проплыть одно и то же расстояние туда и обратно в реке или в озере
Если принять что моторная лодка плывет соскоростью V, а скорость течения реки U (причем скорость лодки больше скорости реки V>U или V/U > 1, так как если скорость реки больше или равна вернуться в исходную точку назад против течения не возможно). Примем что расстояние из одной точки в другую равно S Тогда вреня затраченное на путь туда и обратно в озере равно t1 = S/V+S/V= 2S/V Время затраченное на путь туда и обратно в реке равно t2 =S/(V-U) +S(V+U) = S*((V+U+V-U)/(V+U)(V-U)) =S*2V/(V^2-U^2)= = (2S/V)*(V^2/(V^2-U^2) = t1*(1/(1-(U/V)^2) Посмотрим на знаменатель дроби он равен 1-(U/V)^2 Величина 0< U/V <1 так как по условию V/U > 1 Следовательно 0< (U/V)^2 <1. Поэтому 0< 1-(U/V)^2 < 1. Следовательно 1/(1-(U/V)^2 >1 Поэтому t2 = t1*(1/(1-(U/V)^2) > t1 (доказано)
ответ: быстрее проплыть одно и тоже расстояние туда и обратно в озере.
Вектор направлен по касательной.
Является, так как любое свободно падающее тело имеет ускорение.