Без учета силы трения тело движется по параболе. Если бы мы бросали из точки А, то наибольшая дальность полета достигалась бы при угле броска в 45°. В этом случае, в точке А горизонтальная и вертикальная составляющие вектора скорости равны между собой.
v_y=v_xv
y
=v
x
Горизонтальная составляющая не меняется, т.к. ускорение свободного падения действует по вертикали.
В точке броска вертикальная составляющая уже другая, а горизонтальная та же.
Воспользуемся формулой перемещения
s= \frac{v_2^2-v_1^2}{2a}s=
2a
v
2
2
−v
1
2
В нашем случае s=h₀, скорости - вертикальные составляющие в точке А и в точке броска. Тогда
\begin{gathered}h_0= \frac{v_0^2sin^2 \alpha-v_0^2cos^2 \alpha }{-2g} \\ \frac{2gh_0}{v_0^2} =cos^2 \alpha -sin^2 \alpha \\ \frac{2gh_0}{v_0^2} =cos2 \alpha \\cos 2 \alpha =\frac{2*9.8*20}{14^2} =2\end{gathered}
h
0
=
−2g
v
0
2
sin
2
α−v
0
2
cos
2
α
v
0
2
2gh
0
=cos
2
α−sin
2
α
v
0
2
2gh
0
=cos2α
cos2α=
14
2
2∗9.8∗20
=2
Такое значение косинуса недопустимо. Это говорит о том, что предложенная скорость слишком мала, что бы камень мог следовать по оптимальной траектории. Максимальное значение косинуса равно 1, следовательно, угол будет равен 0. Значит, бросаем горизонтально.
ответ: 0
Объяснение:
1)
Время падения с высоты H:
t = √ (2·H/g)
Треть времени:
Δt = t / 3.
2)
Путь за первую треть:
S₁ = g·(Δt)²/2
Но S₀ = 0
Тогда:
Vcp ₁ = (S₁ - S₀) / Δt = (g·(Δt)²/2 - 0) / Δt = g·Δt/2 (1)
3)
Путь за две трети:
S₂ = g·(2·Δt)² / 2 = 4·g·Δt² / 2
Путь за 3 трети:
S₂ = g·(3·Δt)² / 2 = 9·g·Δt² / 2
Тогда:
ΔS₃ = S₃ - S₂ = (9·g·Δt² / 2) - (4·g·Δt² / 2) = 5·g·Δt² / 2
Средняя скорость:
Vcp ₃ = ΔS₃ / Δt = 5·g·Δt / 2 (2)
4)
Находим отношение скоростей. Разделим (2) на (1):
Vcp ₃ / Vcp₁ = 5
Правильный ответ:
4) 5