Минимальная кинетическая энергия будет в верхней точке траектории (в вершине параболы), в этой точке вертикальная составляющая скорости (проекция скорости на вертикальную ось) равна нулю, и, как известно горизонтальная составляющая скорости - постоянна. максимальная кинетическая энергия будет или в начальный момент, или в момент падения. Будем считать, что тело брошено с поверхности земли. Имеем. E_k_min = (m/2)*(v_x)^2; E_k_max = (m/2)*(v0)^2; (v0)^2 = (v0_y)^2 + (v_x)^2; по условию E_k_max = 2*E_k_min; (m/2)*( (v0_y)^2 + (v_x)^2 ) = 2*(m/2)*(v_x)^2; (v0_y)^2 + (v_x)^2 = 2*(v_x)^2; (v0_y)^2 = (v_x)^2; v0_y = v_x; итак: v0_y = v_x; tg(a) = v0_y/v_x = 1; a = arctg(1) = 45 градусов.
Тормозной путь равен l = v0t - at^2/2 время торможения равно t = v0/a подставляя выражение для t в первое уравнение, получаем связь тормозного пути, начальной скорости и ускорения, вызванного равнодействующих сил: l = v^2/2a откуда можно получить ускорение a = v^2/2l Поскольку F = ma, получаем уравнение для вычисления силы F = mv^2/2l = 1000*900/180 = 5000 Н Эту же задачу можно решить, применяя динамический подход. Поскольку кинетическая энергия мотоциклиста равна mv0^2/2 была израсходована на совершение работы против сил трения на пути l, каковая работа определяется как A = Fl, то, приравняв эти два выражения друг другу mv0^2/2 = Fl получим то же самое выражение: F = mv^2/2l = 1000*900/180 = 5000 Н
максимальная кинетическая энергия будет или в начальный момент, или в момент падения. Будем считать, что тело брошено с поверхности земли. Имеем.
E_k_min = (m/2)*(v_x)^2;
E_k_max = (m/2)*(v0)^2;
(v0)^2 = (v0_y)^2 + (v_x)^2;
по условию E_k_max = 2*E_k_min;
(m/2)*( (v0_y)^2 + (v_x)^2 ) = 2*(m/2)*(v_x)^2;
(v0_y)^2 + (v_x)^2 = 2*(v_x)^2;
(v0_y)^2 = (v_x)^2;
v0_y = v_x;
итак: v0_y = v_x;
tg(a) = v0_y/v_x = 1;
a = arctg(1) = 45 градусов.