ответ: ≈1643 кг.
Объяснение:
Вес спускаемого аппарата P=m*a, где m - масса аппарата, a - ускорение свободного падения у Сатурна. Оно находится из уравнения a=G*M1/R1², где G - гравитационная постоянная, M1 и R1 - масса и радиус Cатурна. Однако так как в условии M1 и R1 не даны, то найдём отношение a к g, где g - ускорение свободного падения у Земли. Так как g=G*M2/R2², где M2 и R2 - масса и радиус Земли, то a/g=(M1/M2)*(R2/R1)²=95*(1/12)²=95/144. А так как g≈9,8 м/с², то отсюда a≈9,8*95/144≈6,47 м/с². Тогда P≈254*6,47≈1643 Н.
Средняя скорость автомобиля равна:
Vср.=(S1+S2)/(t1+t2)
Расстояние первой части пути, проехавшего автомобиля составляет: S=V*t
S1=4v/5*t1=4v*t1/5
Расстояние второй части пути, проехавшего автомобиля составляет:
S2=2v*t2
А так как средняя скорость на всём пути равна 2v, составим уравнение:
(4v*t1/5+2v*t2)/(t1+t2)=v
4v*t1/5+2v*t2=v*(t1+t2) приведём уравнение к общему знаменателю 5
4v*t1+5*2v*t2=5*v*(t1+t2)
v*(4t1+10t2)=v*(5t1+5t2) Разделим левую и правую части уравнения на (v)
4t1+10t2=5t1+5t2
4t1-5t1=5t2-10t2
-t1=-5t2 умножим левую и правую части уравнения на (-1)
t1=5t2
Отсюда следует, что соотношение времени равно:
t1/t2=1/5