ответ:Начнем с анализа имеющегося графика. Итак, процесс 1-2 – изобара, потому что давление не меняется. Объем растет, следовательно, растет температура. Процесс 2-3 – изохора. Объем неизменен, давление падает – следовательно, и температура падает тоже. Последний участок – 3-1 – изотерма. Объем уменьшается, давление растет. Попробуем изобразить этот цикл в новых осях. Возьмем оси V,T. Процесс 1-2 – изобара – будет в этих осях изображаться прямой, выходящей из начала координат. Двигаться по этой прямой будем вверх, так как мы уже заметили, что растут как температура, так и объем.
Следующий процесс – изохора – изображается в осях V,T горизонтальной прямой. Двигаться будем влево, в сторону уменьшения температуры, так как давление падает. Причем можно заметить, что дойти мы должны ровно до начального уровня температуры – ведь дальше она меняться уже не будет.
Ну и последний этап – изотерма, вертикальная прямая в осях V,T – до встречи с точкой 1.
Теперь рассмотрим оси p,T. Изобара в этих осях – горизонтальная прямая, двигаемся вправо: температура растет (ведь объем-то увеличивается на исходном графике):
Следующий процесс – изохора – изображается в осях p,T как прямая, обязательно выходящая из начала координат. Поэтому проводим вс прямую:
И спускаемся по ней (давление же падает) вниз до достижения начальной температуры.
После чего по изотерме нужно подняться вверх до достижения начального давления.
погружение кубика в воде k = 0,8 объема
плотность воды p1 = 1000 кг/м3
плотность кубика p2
долита жидкость с плотностью р3
высота слоя жидкости h = 8 см и совпадает с верхней гранью кубика
закон архимеда для кубика плавающего в воде гласит что масса кубика равна массе вытесненой воды
S*H*p2=S*(H*k)*p1
значит р2 = k*p1
закон архимеда для кубика плавающего в смеси двух жидкостей гласит что масса кубика равна массе вытесненых жидкостей
S*H*p2=S*(H-h)*p1+S*h*p3
значит H*p2=(H-h)*p1+h*p3
p3 = (H*p2-(H-h)*p1)/h =
= (H*k*p1-(H-h)*p1)/h =
= p1*(H*k-(H-h))/h =
= p1*(1-H/h*(1-k)) = 1000*(1-9/8*(1-0,8)) кг/м3 = 775 кг/м3 - это ответ
p3 = p1*(1-H/h*(1-k)) - общая формула для этой и аналогичных задач