Бо́ровская моде́ль а́тома (Моде́ль Бо́ра) — полуклассическая модель атома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы излучать энергию непрерывно и очень быстро и, потеряв её, упасть на ядро. Чтобы преодолеть эту проблему, Бор ввёл допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определённым (стационарным) орбитам, находясь на которых они не излучают энергию, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причём, стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка[1]: {\displaystyle m_{e}vr=n\hbar \ } m_{e}vr=n\hbar \ .
Используя это допущение и законы классической механики, а именно равенство силы притяжения электрона со стороны ядра и центробежной силы, действующей на вращающийся электрон, он получил следующие значения для радиуса стационарной орбиты {\displaystyle R_{n}} R_n и энергии {\displaystyle E_{n}} E_{n} находящегося на этой орбите электрона:
{\displaystyle R_{n}=4\pi {\frac {\varepsilon _{0}}{Ze^{2}}}{\frac {n^{2}\hbar ^{2}}{m_{e}}};\quad E_{n}=-{\frac {1}{8\pi }}{\frac {Ze^{2}}{\varepsilon _{0}}}{\frac {1}{R_{n}}};} {\displaystyle R_{n}=4\pi {\frac {\varepsilon _{0}}{Ze^{2}}}{\frac {n^{2}\hbar ^{2}}{m_{e}}};\quad E_{n}=-{\frac {1}{8\pi }}{\frac {Ze^{2}}{\varepsilon _{0}}}{\frac {1}{R_{n}}};}
Здесь {\displaystyle m_{e}} m_e — масса электрона, {\displaystyle Z} Z — количество протонов в ядре, {\displaystyle \varepsilon _{0}} \varepsilon _{0} — электрическая постоянная, {\displaystyle e} e — заряд электрона.
Именно такое выражение для энергии можно получить, применяя уравнение Шрёдингера в задаче о движении электрона в центральном кулоновском поле.
Радиус первой орбиты в атоме водорода R0=5,2917720859(36)⋅10−11 м[2], ныне называется боровским радиусом, либо атомной единицей длины и широко используется в современной физике. Энергия первой орбиты {\displaystyle E_{0}=-13.6} E_{0}=-13.6 эВ представляет собой энергию ионизации атома водорода.
d = V0 t => V0 = d / t.
по вертикали пучок движется по параболе под действием Кулоновской силы, которая равна по 2 закону Ньютона ma (пренебрегаем силой тяжести):
F = Ma,
E Q = Ma,
a = E Q / M.
при этом заряд Q пучка электронов равен Q = q * n, где q - заряд одного электрона, n - количество электронов
масса пучка электронов равна M = m * n, где m - масса одного электрона, n - число электронов
Тогда: a = E q / m.
по оси OY пучок электронов проходит расстояние, равное (начальная скорость в проекции на ось OY равна нулю, т.к. они перпендикулярны):
S = a t^2 / 2, где S - нам известно, 1 мм
S = E q t^2 / 2. Тогда
t = sqrt(2 S m / E q).
вернемся к движению относительно оси ОХ:
V0 = d / t = d / sqrt(2 S m / E q).
V0 = 5*10^-2 / sqrt(2 * 10^-3 * 9,1*10^-31 / 15*10^3 * 1,6*10^-19),
V0 = 5*10^-2 / sqrt(18,2*10^-34 / 24*10^-16),
V0 = 5*10^-2 / 8,706*10^-10,
V0 = 0,574*10^8 м/с