Подробно тут нечего объяснять. Учи формулы xD
Нам необходимо найти начальную скорость, т.к. она не указана в задаче)
Вычисляется по формуле Vo^2=2gh (Начальная скорость в квадрате)
V0^2 = 400. Корень из 400 = 20 - это наша начальная скорость.
Теперь нам известна начальная скорость и теперь нам надо найти обычную на десятой секунде полёта. Формула к ней выводится из уравнения равнопеременного прямолинейного движения. Vк^2-Vo^2 = 2aS. (Конечная скорость в квадрате минус начальная скорость в квадрате) В данной формуле вместо ускорения а у нас сила тяги g, которая равна 10. А наше расстояние S это высота подъема h, НА КОТОРОЙ МЫ ИЩЕМ СКОРОСТЬ ТЕЛА, т.е. 10 метров. Но мы не должны забывать,что тело замедляется во время полёта вверх, т.к. сила тяги g действует в обратную сторону (вниз), значит ее значение мы берем с минусом.
Таким образом у нас получается следующая формула :
Vк^2-Vo^2= -2gh. Находим Vк^2:
Vк^2 = -2gh+Vo^2
Vк^2 = -20*10 + 400
Vк^2 = 200
Корень из 200 примерно равен 14.
Наш ответ: Vк = 14 м/c
Дано:
m1 = 1 кг
H max = 20 м
h = 10 м
v - ?
Решение.
Примем уровень земли за нуль потенциальной энергии. Тогда в момент броска полная механическая энергия системы "тело - земля" определяется лишь кинетической энергией. На высоте h полная механическая энергия определяется суммой кинетической и потенциальной энергий. В соответствии с законом сохранения энергии:
m*v0²/2 = m*v²/2 + m*g*h, откуда v = √(v0² - 2*g*h). (1)
В момент подъёма тела на максимальную высоту оно обладает только потенциальной энергией, равной m*g*Hmax. Закон сохранения энергии в этом случае запишется так:
m*v0²/2 = m*g*Hmax, откуда v0² = 2*g*Hmax.
Подставив это значение в уравнение (1), получаем:
v = √(2*g*Hmax - 2*g*h) = √(2*g*(Hmax - h) = √(2*10*(20 - 10) = 10√2 м/с.
ответ: 14,1 м/с
ответ: Счетчик Гейгера – это герметичная камера, изготовленная из металла или стекла и наполненная инертным газом, как правило, аргоном или неоном, и находящегося под низким давлением (строение и принцип работы). В камеру встроены два электрода (анод и катод). Для большинства отечественных дозиметров, основанных на счетчике типа СБМ – 20, катод представляет собой практически весь кожух чувствительного датчика, а анод лишь тонкая проволочка внутри него. А для счетчиков типа Бета – 1 или Бета – 2, характерна многосекционная система электродов и более сложное строение, это позволяет регистрировать самые различные типы радиационного излучения. Для таких счетчиков характерна толщина рабочего окна (площади попадания радиации, основанной на альфа и бета частицах), около 12 мкм. Поэтому такие дозиметры торцевого типа в состоянии регистрировать слабоэнергетические бета-частицы, а при правильно проведенных замерах и альфа-частицы высоких энергий, для этого следует проводить замер не далее чем на 1 – 2 мм от источника радиации альфа-излучения.
Чтобы датчик дозиметра мог регистрировать радиоактивные частицы или кванты гамма излучения, на электроды подается высокое напряжение от 350 до 475 вольт. В состоянии покоя между катодом и анодом не происходит разряда, так как инертный газ служит диэлектриком. Однако ситуация меняется, если в камеру попадает радиоактивная частица, в этом случае она выбивает свободный электрон из катода или поверхности кожуха счетчика, который продолжает двигаться и выбивает электроны из газа, что вызывает ионизацию и происходит электрический разряд между катодом и анодом. Такой разряд и фиксирует электроника прибора, а также ведет учет всех радиоактивных частиц через рабочую камеру. В случае, если требуется зафиксировать и определить альфа-частицы и бета-частицы малых энергий, то в этом тонкое рабочее окно из слюдяной пленки, через него в камеру попадает радиация этого типа и вызывает ионизацию. Читайте также: как доработать дозиметр радиации.
Объяснение: