Ускорение свободного падения на высоте h над поверхностью Земли:
\displaystyle g=\frac{G\cdot M}{(R+h)^{2}}g=(R+h)2G⋅M
где G = 6,67·10⁻¹¹ H·м²/кг² - гравитационная постоянная
М = 6·10²⁴ кг - масса Земли
R = 6,4·10⁶ м - радиус Земли
h - высота тела над поверхностью Земли, м
Так как g₁ = g/16, то:
\begin{lgathered}\displaystyle h=\sqrt{\frac{16\cdot G\cdot M}{g}}-R=\sqrt{\frac{16\cdot6,67\cdot10^{-11}\cdot6\cdot10^{24}}{9,8}}-6,4\cdot10^{6}={} \ \ =25,56\cdot10^{6}-6,4\cdot10^{6}=19,16\cdot10^{6} \ (m)\approx3R\end{lgathered}h=g16⋅G⋅M−R=9,816⋅6,67⋅10−11⋅6⋅1024−6,4⋅106= =25,56⋅106−6,4⋅106=19,16⋅106 (m)≈3R
ответ: ускорение свободного падения уменьшится в 16 раз
на высоте, равной трем радиусам Земли.
Объяснение:
думаю рішила правильно
Теперь нам надо записать 2 закон Ньютона в векторном виде: →
→ → → → →
Fтяг+Fтр+mg+N=ma, теперь нам надо найти проекции этих сил на координатные оси ОХ: Fтяг-Fтр - mg sinα=ma (сила трения имеет отрицательную проекцию, тк. она направлена "против" оси ОХ, mg отрицательна т.к. идем от начала проекции к концу против направления оси, а если опустить перпендикуляр из конца вектора на ОХ то получим, что угол 30 будет лежать напротив проекции, т.е сам вектор при этом будет равен mg sinα)
Теперь аналогично находим проекции всех векторов на ОУ: 0+0-mg cosα+N=0 отсюда находим, что N=mg cosα, вспоминаем, что Fтр=μN=μ mg cosα, осталось все собрать в кучу, получаем: Fтяг- μ mg cosα - mg sinα=ma отсюда a=(Fтяг -μ mg cosα -mg sinα)/m=(7000-0,1*1000*10*√3/2 - 1000*10*1/2)/1000=(6150-5000)/1000=1150/1000=1,15 м/с.кв.