Задание 1. На рисунке представлен график зависимости модуля скорости от времени t. Определите по графику путь, пройденный автомобилем в интервале времени от 0 до 30 с. Решение. Путь, пройденный автомобилем в интервале времени от 0 до 30 с проще всего определить как площадь трапеции, основаниями которой являются интервалы времени (30 – 0) = 30 c и (30 – 10) = 20 с, а высотой является скорость v = 10 м/с, т.е. S = (30 + 20) с 10 м/с = 250 м. 2 ответ. 250 м. Задание 2. Груз массой 100 кг поднимают вертикально вверх с троса. На рисунке приведена зависимость проекции скорости V груза на ось, направленную вверх, от времени t. Определите модуль силы натяжения троса в течение подъема. Рис. 1 Рис. 2 Решение. По графику зависимости проекции скорости v груза на ось, направленную вертикально вверх, от времени t, можно определить проекцию ускорения груза a = ∆v = (8 – 2) м/с = 2 м/с2. ∆t 3 с На груз действуют: сила тяжести , направленная вертикально вниз и сила натяжения троса , направленная вдоль троса вертикально вверх смотри рис. 2. Запишем основное уравнение динамики. Воспользуемся вторым законом Ньютона. Геометрическая сумма сил действующих на тело равна произведению массы тела на сообщаемое ему ускорение. + = (1) Запишем уравнение для проекции векторов в системе отсчета, связанной с землей, ось OY направим вверх. Проекция силы натяжения положительная, так как направление силы совпадает с направлением оси OY, проекция силы тяжести отрицательная, так как вектор силы противоположно направлен оси OY, проекция вектора ускорения тоже положительная, так тело движется с ускорением вверх. Имеем T – mg = ma (2); из формулы (2) модуль силы натяжения Т = m(g + a) = 100 кг (10 + 2) м/с2 = 1200 Н. ответ. 1200 Н. Задание 3. Тело тащат по шероховатой горизонтальной поверхности с постоянной скоростью модуль которой равен 1, 5 м/с, прикладывая к нему силу так, как показано на рисунке (1). При этом модуль действующей на тело силы трения скольжения равен 16 Н. Чему равна мощность, развиваемая силой F? Рис. 1 Рис. 2 Решение. Представим себе физический процесс, заданный в условии задачи и сделаем схематический чертеж с указанием всех сил, действующих на тело (рис.2). Запишем основное уравнение динамики. + тр + + = (1) Выбрав систему отсчета, связанную с неподвижной поверхностью, запишем уравнения для проекции векторов на выбранные координатные оси. По условию задачи тело движется равномерно, так как его скорость постоянна и равна 1,5 м/с. Это значит, ускорение тела равно нулю. По горизонтали на тело действуют две силы: сила трения скольжения тр. и сила , с которой тело тащат. Проекция силы трения отрицательная, так как вектор силы не совпадает с направлением оси Х. Проекция силы F положительная. Напоминаем, для нахождения проекции опускаем перпендикуляр из начала и конца вектора на выбранную ось. С учетом этого имеем: F cosα – Fтр = 0; (1) выразим проекцию силы F, это Fcosα = Fтр = 16 Н; (2) тогда мощность, развиваемая силой , будет равна N = Fcosα V (3) Сделаем замену, учитывая уравнение (2), и подставим соответствующие данные в уравнение (3): N = 16 Н · 1,5 м/с = 24 Вт. ответ. 24 Вт.
Конвекция - это процессы перемещения по вертикали в подвижной среде (жидкости, газе, плазме) , вызванные силами плавучести. если появляется в подвижной среде объём, имеющий меньшую плотность, то он становится "легче" окружающей среды и начинает подниматься вверх, а при этом более плотные и тяжёлые объёмы начинают опускаться вниз, т. е. начинается вертикальная циркуляция и соответствующие потоки в этой подвижной среде. этот процесс наблюдается и проявляется в совершенно различных вариантах и средах. его можно проиллюстрировать массой примеров. 1. в чайнике (кастрюле, , когда его нагревают снизу, начинаются циркуляционные вертикальные конвективные токи - по центру, над точкой нагрева "всплывают" вверх более тёплые и нагретые массы воды, а по краям - более холодные вниз. 2. в атмосфере в результате либо нагрева подстилающей поверхности (термическая конвекция) либо из за прихода на тёплую поверхность холодного воздуха (динамическая конвекция) начинаются мощные вертикальные движения, в результате которых поднимающиеся вверх воздушные массы за счёт расширения, конденсируются и формируют мощные конвективные облака (см. фото и вид с экрана метеолокатора) . эти облака являются причиной мощнейших явлений природы - ливней, гроз, града и шквалов. поэтому за этими облаками следят метеорологи по данным метеолокаторов и спутников и о них. недавно под донецком диспетчеры не экипаж ту-154 о сверхмощном грозовом облаке, которое им встретилось на пути и самолёт, попав в верхней части облака в сильнейшую турбулентность, потерял , перешёл в штопор и разбился. всё это следствие именно конвекции. 3. на солнце перегретые массы плазмы изнутри светила вырываются иногда вверх из-за конвекции, поднимаясь вверх, по инерции "вылетают" на тысячи километров над поверхностью солнца (протуберанцы) , а затем, охладившись, снова вниз. а поскольку их температура так высока, что их светимость смещена в коротковолновую часть спектра, то в видимой части спектра такие области меньшую яркость, почему их и называют "тёмными пятнами" на солнце. и это также следствие конвекции, но в плазме, из которой состоит солнце.
Задание 1. На рисунке представлен график зависимости модуля скорости от времени t. Определите по графику путь, пройденный автомобилем в интервале времени от 0 до 30 с. Решение. Путь, пройденный автомобилем в интервале времени от 0 до 30 с проще всего определить как площадь трапеции, основаниями которой являются интервалы времени (30 – 0) = 30 c и (30 – 10) = 20 с, а высотой является скорость v = 10 м/с, т.е. S = (30 + 20) с 10 м/с = 250 м. 2 ответ. 250 м. Задание 2. Груз массой 100 кг поднимают вертикально вверх с троса. На рисунке приведена зависимость проекции скорости V груза на ось, направленную вверх, от времени t. Определите модуль силы натяжения троса в течение подъема. Рис. 1 Рис. 2 Решение. По графику зависимости проекции скорости v груза на ось, направленную вертикально вверх, от времени t, можно определить проекцию ускорения груза a = ∆v = (8 – 2) м/с = 2 м/с2. ∆t 3 с На груз действуют: сила тяжести , направленная вертикально вниз и сила натяжения троса , направленная вдоль троса вертикально вверх смотри рис. 2. Запишем основное уравнение динамики. Воспользуемся вторым законом Ньютона. Геометрическая сумма сил действующих на тело равна произведению массы тела на сообщаемое ему ускорение. + = (1) Запишем уравнение для проекции векторов в системе отсчета, связанной с землей, ось OY направим вверх. Проекция силы натяжения положительная, так как направление силы совпадает с направлением оси OY, проекция силы тяжести отрицательная, так как вектор силы противоположно направлен оси OY, проекция вектора ускорения тоже положительная, так тело движется с ускорением вверх. Имеем T – mg = ma (2); из формулы (2) модуль силы натяжения Т = m(g + a) = 100 кг (10 + 2) м/с2 = 1200 Н. ответ. 1200 Н. Задание 3. Тело тащат по шероховатой горизонтальной поверхности с постоянной скоростью модуль которой равен 1, 5 м/с, прикладывая к нему силу так, как показано на рисунке (1). При этом модуль действующей на тело силы трения скольжения равен 16 Н. Чему равна мощность, развиваемая силой F? Рис. 1 Рис. 2 Решение. Представим себе физический процесс, заданный в условии задачи и сделаем схематический чертеж с указанием всех сил, действующих на тело (рис.2). Запишем основное уравнение динамики. + тр + + = (1) Выбрав систему отсчета, связанную с неподвижной поверхностью, запишем уравнения для проекции векторов на выбранные координатные оси. По условию задачи тело движется равномерно, так как его скорость постоянна и равна 1,5 м/с. Это значит, ускорение тела равно нулю. По горизонтали на тело действуют две силы: сила трения скольжения тр. и сила , с которой тело тащат. Проекция силы трения отрицательная, так как вектор силы не совпадает с направлением оси Х. Проекция силы F положительная. Напоминаем, для нахождения проекции опускаем перпендикуляр из начала и конца вектора на выбранную ось. С учетом этого имеем: F cosα – Fтр = 0; (1) выразим проекцию силы F, это Fcosα = Fтр = 16 Н; (2) тогда мощность, развиваемая силой , будет равна N = Fcosα V (3) Сделаем замену, учитывая уравнение (2), и подставим соответствующие данные в уравнение (3): N = 16 Н · 1,5 м/с = 24 Вт. ответ. 24 Вт.
ВУАЛЯ