• по определению кпд: n = q/qзатр, где qзатр - затраченная теплота на нагрев куска меди (будем считать далее, что температура t2 не является температурой плавления меди)
• медь нагревается за счет горения угля. значит:
○ n = q/(q m1)
○ m1 = q/(n q)
• теплота q расходуется на нагрев куска меди: q = c m2 (t2 - t1) (1)
• далее эта же теплота q пойдет на плавление льда (его температура по условию 0 °с, поэтому плавление начнется сразу же): q = λ m3 (2)
• приравняв уравнения (1) и (2), находим:
○ t2 = t1 + ((λ m3)/(c m2))
• подставляем уравнение в выражение (1). получаем:
Для частных случаев равномерных движений мгновенная скорость всегда равна средней, поскольку в любой момент времени путь l(t) = vt следовательно v ср = l/t = vt/t = v
В общем случае мгновенная скорость может в определенные моменты времени оказываться равной средней скорости по тому или иному промежутку времени. Можно доказать, что прямоугольник, равновеликий криволинейному, ограниченному сверху гладкой непрерывной кривой, и имеющий с ним общее нижнее основание, пересекает верхней стороной эту кривую по крайней мере в одной точке. Но доказательство этого утверждения - скорее математическая, а не физическая проблема.
• по определению кпд: n = q/qзатр, где qзатр - затраченная теплота на нагрев куска меди (будем считать далее, что температура t2 не является температурой плавления меди)
• медь нагревается за счет горения угля. значит:
○ n = q/(q m1)
○ m1 = q/(n q)
• теплота q расходуется на нагрев куска меди: q = c m2 (t2 - t1) (1)
• далее эта же теплота q пойдет на плавление льда (его температура по условию 0 °с, поэтому плавление начнется сразу же): q = λ m3 (2)
• приравняв уравнения (1) и (2), находим:
○ t2 = t1 + ((λ m3)/(c m2))
• подставляем уравнение в выражение (1). получаем:
○ t1 = (q - λ m3)/(m2 - m1)