З якою силою тисне на дно посудини шар води товщиною 25 см, якщо площа дна посудини 8 дм2 (квадратних)? Густина води 1 г/см3 (кубічний) Потрібен розв‘язок для 7 класу, в вигляді задачі ! Буду дуже вдячний!
Рассмотрим два участка движения тела. Участок 1 - наклонный. Участок 2 - горизонтальный. На участке 1 выберем направление оси х вдоль наклонной поверхности вниз, оси у - перпендикулярно наклонной поверхности вверх. На тело действуют три силы: вес (направлена вертикально вниз, раскладывается на две составляющие по осям х - в полож.направлении и у-в отриц.направлении), норм.реакция опоры (направлена перпендикулярно к накл.поверхности вверх, т.е. в полож.направлении оси у), трения (направлена в отриц.направлении по оси х). Проекция веса тела на ось у полностью уравновешена реакцией опоры, т.е. ускорение вдоль у равно 0. Тогда N=m*g*cos(alfa). ВДоль оси х 2-закон Ньютона выглядит так: m*g*sin(alfa)-μ*N=m*a. Учитывая выражение для реакции опоры, получим: m*g*sin(alfa)-μ*m*g*cos(alfa)=m*a. Сократим на m: g*sin(alfa)-μ*g*cos(alfa)=a. Исходим из того, что тело начало движение из состояние покоя. Тогда скорость в конце наклонного участка 1: V=a*t. Время движения: t=SQRT(2*l/a). L-длина наклонного участка: L=h/sin(alfe). Подставив все это в выражение для скорости , получим: V=SQRT(2*L*g*(sin(alfa)-μ*cos(alfa)). Это скорость в конце участка 1, она же есть начальная скорость на участке 2 (горизонтальном).
На участке 2 тело движется под действием тех же трех сил, только теперь осб х - горизонтальная, у - вертикальная. Таким образом, вес направлен вертикально вниз и его х-составляющая равна 0. По 2 закону нюьтона, учитвая, что вес полностью уравновешен силой реакции опоры, получим: Fтр=μ*N=μ*m*g=m*a2, где a2-ускорение (замедление) на участке 2. Отсюда :а2=μ*g. Движение на этом участке равнозамедленное. Начальная скорость известна, конечная - равна 0: 0=V-a2*t, отсюда: t=V/a2=V/(μ*g). Это время, пройденное телом до остановка на участке 2. Расстояние в случае равнозамедленного движения:L2=V*t-a2*t*t/2=V*V/(μ*g)-μ*g*(V/(μ*g)*(V/(μ*g)/2. Упростив выражение получим: L2=V*V/(2*μ*g). Подставим найденное для участка 1 выражение конечной скорости V: L2=2*L*g*(sin(alfa)-μ*cos(alfa))/(2*μ*g)=L*(sin(alfa)-μ*cos(alfa))/μ=h*(sin(alfa)-μ*cos(alfa))/(μ*sin(alfa)). В конечном преобразовании использовано выражение для длины наклонного пути, полученное при рассмотрении участка 1.
1. Если молекулы столкнулись с достаточной скоростью то они слипнуться и войдут в "золотую середину", т.е. когда и силы притяжения и силы отталкивания уравновешены. если же скорость была недостаточной, то они просто отскочат друг от друга 2. Надутый гелием резиновый шарик, казалось бы резина сплошное вещество, но молекулы гелия проникают через кристаллическую решетку шарика, и он со временем сдуваеться. 3. Молекула в твердом веществе постоянно колеблеться из-за наличии энергии(температуры). Так же она имеет своё место, и не может с него сама сдвинуться.
На участке 2 тело движется под действием тех же трех сил, только теперь осб х - горизонтальная, у - вертикальная. Таким образом, вес направлен вертикально вниз и его х-составляющая равна 0. По 2 закону нюьтона, учитвая, что вес полностью уравновешен силой реакции опоры, получим: Fтр=μ*N=μ*m*g=m*a2, где a2-ускорение (замедление) на участке 2. Отсюда :а2=μ*g. Движение на этом участке равнозамедленное. Начальная скорость известна, конечная - равна 0: 0=V-a2*t, отсюда: t=V/a2=V/(μ*g). Это время, пройденное телом до остановка на участке 2. Расстояние в случае равнозамедленного движения:L2=V*t-a2*t*t/2=V*V/(μ*g)-μ*g*(V/(μ*g)*(V/(μ*g)/2. Упростив выражение получим: L2=V*V/(2*μ*g). Подставим найденное для участка 1 выражение конечной скорости V: L2=2*L*g*(sin(alfa)-μ*cos(alfa))/(2*μ*g)=L*(sin(alfa)-μ*cos(alfa))/μ=h*(sin(alfa)-μ*cos(alfa))/(μ*sin(alfa)). В конечном преобразовании использовано выражение для длины наклонного пути, полученное при рассмотрении участка 1.