График зависимости «пройденного пути» от времени для автомобиля представлен на первом рисунке:
Он описывается функцией:
S1(t) = 36[км/ч] * t , поскольку 10 м/с = 36 км/ч
График зависимости «пройденного пути» от времени для велосипеда представлен на втором рисунке:
Он описывается функцией:
S2(t) = 18[км/ч] * t ;
Так же, для анализа происходящего – удобно построить не только графики зависимости «пройденного пути» от времени, а и графики зависимости КООРДИНАТЫ СМЕЩЕНИЙ ВДОЛЬ ТРАЕКТОРИИ от времени. Начнём отсчитывать координаты от города «А» в сторону города «B».
Тогда начальная координата автомобиля равна нулю и функция зависимости КООРДИНАТЫ от времени для автомобиля будет выглядить аналогичным образом:
x1(t) = 36[км/ч] * t ;
Иначе обстоит дело с велосипедом. Его начальная координата равна 108 км. А его скорость в виде проекции на координаты – имеет отрицательное значение, поскольку с течением времени кордината велосипеда становится всё меньше и меньше по мере приближения его к началу отсчёта, т.е. к нудевой отметке, т.е. к городу «А». Итак:
x2(t) = 108 км – 18[км/ч] * t ;
Оба этих графика представлены на третьем рисунке. На это графике как раз уже хорошо видно, что автомобиль за 2 часа проехал от нулевой отметки до 72 километра, а велосипед за те же 2 часа от 108-ого километра до 72-ого километра вниз, т.е. 36 километров.
Вредна при соприкосновении каких-нибудь вращающихся деталей, вследствие чего детали могут стираться. если бы не было трения, мы не могли бы ходить по земле (вспомните, как скользят ноги на льду) , нельзя было бы ездить на велосипеде, автомобиле, мотоцикле (колеса вертелись бы на месте) , нам нечего было бы носить (нитки в ткани держатся силами трения) . Если не было бы трения, вся мебель в комнате сбилась бы в один угол, тарелки, ста-капы и блюдца соскальзывали бы со стола, гвозди и шурупы не держались бы в стене, ни одной вещи нельзя было бы удержать в руках и т. д. и т. п. К этому можно добавить, что, если бы не было трения, неизвестно, как пошло бы развитие цивилизации на Земле — ведь наши предки добывали огонь трением.
Он описывается функцией:
S1(t) = 36[км/ч] * t , поскольку 10 м/с = 36 км/ч
График зависимости «пройденного пути» от времени для велосипеда представлен на втором рисунке:
Он описывается функцией:
S2(t) = 18[км/ч] * t ;
Так же, для анализа происходящего – удобно построить не только графики зависимости «пройденного пути» от времени, а и графики зависимости КООРДИНАТЫ СМЕЩЕНИЙ ВДОЛЬ ТРАЕКТОРИИ от времени. Начнём отсчитывать координаты от города «А» в сторону города «B».
Тогда начальная координата автомобиля равна нулю и функция зависимости КООРДИНАТЫ от времени для автомобиля будет выглядить аналогичным образом:
x1(t) = 36[км/ч] * t ;
Иначе обстоит дело с велосипедом. Его начальная координата равна 108 км. А его скорость в виде проекции на координаты – имеет отрицательное значение, поскольку с течением времени кордината велосипеда становится всё меньше и меньше по мере приближения его к началу отсчёта, т.е. к нудевой отметке, т.е. к городу «А». Итак:
x2(t) = 108 км – 18[км/ч] * t ;
Оба этих графика представлены на третьем рисунке. На это графике как раз уже хорошо видно, что автомобиль за 2 часа проехал от нулевой отметки до 72 километра, а велосипед за те же 2 часа от 108-ого километра до 72-ого километра вниз, т.е. 36 километров.