Сначала изложим общий ход решения. Нужно найти плотность полученного сплава ρ₁ и сравнить её со средней плотностью кубика ρ₂. Средняя плотность будет равна массе кубика деленной на его объем. Если эта средня плотность окажется меньше плотности сплава, значит пустоты есть.
Найдем массу полученного кубика. Для этого сложим массы исходных компонентов. Далее находим объем А затем выражаем среднюю плотность [г/см³] Теперь необходимо найти плотность сплава. Для этого находим объемы его компонентов. И считаем, что объем сплава будет равен их сумме. [см³] [см³] Суммарный объем: [см³] А плотность сплава соответственно: [г/см³]
Значит пустоты есть. И объем этой пустоты равен разности объема кубика и суммарного объема сплава [см³]
Абсолютная температура T = t + 273 T - температура кельвина t - температура по цельсию
Температура фаренгейта F = 32 + 1.8 C F - температура фаренгейта C - температура по цельсию
Количество тепла (теплоты) Q = cm(T_2 - T_1) Q - количество тепла c - удельная теплота m - масса T_1 - начальная температура T_2 - конечная температура
Горение топлива Q = qm Q - количество тепла q - удельная теплота сгорания m - масса
Теплота плавления Q = λ m Q - количество тепла λ - удельная теплота плавления m - масса
Испарение и количество тепла Q = L m Q - количество тепла L - удельная теплота испарения m - масса
Нужно найти плотность полученного сплава ρ₁ и сравнить её со средней плотностью кубика ρ₂. Средняя плотность будет равна массе кубика деленной на его объем.
Если эта средня плотность окажется меньше плотности сплава, значит пустоты есть.
Найдем массу полученного кубика. Для этого сложим массы исходных компонентов.
Далее находим объем
А затем выражаем среднюю плотность
Теперь необходимо найти плотность сплава. Для этого находим объемы его компонентов. И считаем, что объем сплава будет равен
их сумме.
Суммарный объем:
А плотность сплава соответственно:
Значит пустоты есть.
И объем этой пустоты равен разности объема кубика и суммарного объема сплава